• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A versatile distributed MCMC algorithm for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
A versatile distributed MCMC algorithm for large scale inverse problems
Author(s) :
Thouvenin, Pierre-Antoine [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centrale Lille
Repetti, Audrey [Auteur]
Heriot-Watt University [Edinburgh] [HWU]
Chainais, Pierre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centrale Lille
Conference title :
30th European Signal Processing Conference, EUSIPCO 2022
City :
Belgrade
Start date of the conference :
2022-08-29
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Traitement des images [eess.IV]
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
For large scale inverse problems, inference can be tackled with distributed algorithms, dividing the task over multiple computing nodes or cores referred to as workers. Since random sampling methods yield not only estimates ...
Show more >
For large scale inverse problems, inference can be tackled with distributed algorithms, dividing the task over multiple computing nodes or cores referred to as workers. Since random sampling methods yield not only estimates but also credibility intervals, we leverage data augmentations and MCMC algorithms to design a distributed sampler. In contrast with usual approaches relying on a client-server architecture, we propose a flexible distributed sampler relying on a Single Program Multiple Data implementation, in which all workers have a similar task. This distributed strategy allows the computing time and volume of communications to be reduced by separately handling blocks of data and parameters on different workers. Experiments on a large synthetic image inpainting problem illustrate the performance of the proposed approach to produce high quality estimates in a small amount of time. Index Terms-Markov chain Monte-Carlo methods, distributed algorithm, inverse problems, Single Program Multiple Data architecture.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03718788/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03718788/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03718788/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017