• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Algorithms for Extreme Bandits
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Efficient Algorithms for Extreme Bandits
Author(s) :
Baudry, Dorian [Auteur]
Scool [Scool]
Russac, Yoan [Auteur]
Kaufmann, Emilie [Auteur] refId
Scool [Scool]
Conference title :
International conference on Artificial Intelligence and Statistics (AISTATS)
City :
Virtual Conference
Country :
Espagne
Start date of the conference :
2022-03-28
Journal title :
Proceedings of Machine Learning Research (PMLR)
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
In this paper, we contribute to the Extreme Bandit problem, a variant of Multi-Armed Bandits in which the learner seeks to collect the largest possible reward. We first study the concentration of the maximum of i.i.d random ...
Show more >
In this paper, we contribute to the Extreme Bandit problem, a variant of Multi-Armed Bandits in which the learner seeks to collect the largest possible reward. We first study the concentration of the maximum of i.i.d random variables under mild assumptions on the tail of the rewards distributions. This analysis motivates the introduction of Quantile of Maxima (QoMax). The properties of QoMax are sufficient to build an Explore-Then-Commit (ETC) strategy, QoMax-ETC, achieving strong asymptotic guarantees despite its simplicity. We then propose and analyze a more adaptive, anytime algorithm, QoMax-SDA, which combines QoMax with a subsampling method recently introduced by Baudry et al. (2021). Both algorithms are more efficient than existing approaches in two aspects (1) they lead to better empirical performance (2) they enjoy a significant reduction of the memory and time complexities.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Au delà de l'apprentissage séquentiel pour de meilleures prises de décisions
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03741302/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/2203.10883
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03741302/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03741302/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03741302/document
  • Open access
  • Access the document
Thumbnail
  • RBK22.pdf
  • Open access
  • Access the document
Thumbnail
  • 2203.10883
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017