The VoicePrivacy 2020 Challenge: Results ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
The VoicePrivacy 2020 Challenge: Results and findings
Auteur(s) :
Tomashenko, Natalia [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Wang, Xin [Auteur]
National Institute of Informatics [NII]
Vincent, Emmanuel [Auteur]
Speech Modeling for Facilitating Oral-Based Communication [MULTISPEECH]
Patino, Jose [Auteur]
Eurecom [Sophia Antipolis]
Srivastava, Brij Mohan Lal [Auteur]
Speech Modeling for Facilitating Oral-Based Communication [MULTISPEECH]
Machine Learning in Information Networks [MAGNET]
Noé, Paul-Gauthier [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Nautsch, Andreas [Auteur]
Eurecom [Sophia Antipolis]
Evans, Nicholas [Auteur]
Eurecom [Sophia Antipolis]
Yamagishi, Junichi [Auteur]
University of Edinburgh [Edin.]
National Institute of Informatics [NII]
O'Brien, Benjamin [Auteur]
Laboratoire Parole et Langage [LPL]
Chanclu, Anaïs [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Bonastre, Jean-François [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Todisco, Massimiliano [Auteur]
Eurecom [Sophia Antipolis]
Maouche, Mohamed [Auteur]
Machine Learning in Information Networks [MAGNET]
Laboratoire Informatique d'Avignon [LIA]
Wang, Xin [Auteur]
National Institute of Informatics [NII]
Vincent, Emmanuel [Auteur]
Speech Modeling for Facilitating Oral-Based Communication [MULTISPEECH]
Patino, Jose [Auteur]
Eurecom [Sophia Antipolis]
Srivastava, Brij Mohan Lal [Auteur]
Speech Modeling for Facilitating Oral-Based Communication [MULTISPEECH]
Machine Learning in Information Networks [MAGNET]
Noé, Paul-Gauthier [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Nautsch, Andreas [Auteur]
Eurecom [Sophia Antipolis]
Evans, Nicholas [Auteur]
Eurecom [Sophia Antipolis]
Yamagishi, Junichi [Auteur]
University of Edinburgh [Edin.]
National Institute of Informatics [NII]
O'Brien, Benjamin [Auteur]
Laboratoire Parole et Langage [LPL]
Chanclu, Anaïs [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Bonastre, Jean-François [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Todisco, Massimiliano [Auteur]
Eurecom [Sophia Antipolis]
Maouche, Mohamed [Auteur]
Machine Learning in Information Networks [MAGNET]
Titre de la revue :
Computer Speech and Language
Pagination :
101362
Éditeur :
Elsevier
Date de publication :
2022-07
ISSN :
0885-2308
Mot(s)-clé(s) en anglais :
automatic speech recognition
attack model
metrics
utility
privacy
anonymization
speech synthesis
voice conversion
speaker verification
attack model
metrics
utility
privacy
anonymization
speech synthesis
voice conversion
speaker verification
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
This paper presents the results and analyses stemming from the first VoicePrivacy 2020 Challenge which focuses on developing anonymization solutions for speech technology. We provide a systematic overview of the challenge ...
Lire la suite >This paper presents the results and analyses stemming from the first VoicePrivacy 2020 Challenge which focuses on developing anonymization solutions for speech technology. We provide a systematic overview of the challenge design with an analysis of submitted systems and evaluation results. In particular, we describe the voice anonymization task and datasets used for system development and evaluation. Also, we present different attack models and the associated objective and subjective evaluation metrics. We introduce two anonymization baselines and provide a summary description of the anonymization systems developed by the challenge participants. We report objective and subjective evaluation results for baseline and submitted systems. In addition, we present experimental results for alternative privacy metrics and attack models developed as a part of the post-evaluation analysis. Finally, we summarise our insights and observations that will influence the design of the next VoicePrivacy challenge edition and some directions for future voice anonymization research.Lire moins >
Lire la suite >This paper presents the results and analyses stemming from the first VoicePrivacy 2020 Challenge which focuses on developing anonymization solutions for speech technology. We provide a systematic overview of the challenge design with an analysis of submitted systems and evaluation results. In particular, we describe the voice anonymization task and datasets used for system development and evaluation. Also, we present different attack models and the associated objective and subjective evaluation metrics. We introduce two anonymization baselines and provide a summary description of the anonymization systems developed by the challenge participants. We report objective and subjective evaluation results for baseline and submitted systems. In addition, we present experimental results for alternative privacy metrics and attack models developed as a part of the post-evaluation analysis. Finally, we summarise our insights and observations that will influence the design of the next VoicePrivacy challenge edition and some directions for future voice anonymization research.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03332224v4/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/2109.00648
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03332224v4/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- VoicePrivacyCSL_HAL.pdf
- Accès libre
- Accéder au document
- 2109.00648
- Accès libre
- Accéder au document