When Privacy Meets Partial Information: A ...
Document type :
Communication dans un congrès avec actes
Title :
When Privacy Meets Partial Information: A Refined Analysis of Differentially Private Bandits
Author(s) :
Conference title :
Advances in Neural Information Processing Systems
City :
New Orleans
Country :
Etats-Unis d'Amérique
Start date of the conference :
2022-12
English keyword(s) :
Differential privacy
Multiarmed bandit
Linear bandits
Regret Bounds
UCB policies
Multiarmed bandit
Linear bandits
Regret Bounds
UCB policies
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Ordinateur et société [cs.CY]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Théorie de l'information [cs.IT]
Informatique [cs]/Intelligence artificielle [cs.AI]
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Ordinateur et société [cs.CY]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Théorie de l'information [cs.IT]
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
We study the problem of multi-armed bandits with $\epsilon$-global Differential Privacy (DP). First, we prove the minimax and problem-dependent regret lower bounds for stochastic and linear bandits that quantify the hardness ...
Show more >We study the problem of multi-armed bandits with $\epsilon$-global Differential Privacy (DP). First, we prove the minimax and problem-dependent regret lower bounds for stochastic and linear bandits that quantify the hardness of bandits with $\epsilon$-global DP. These bounds suggest the existence of two hardness regimes depending on the privacy budget $\epsilon$. In the high-privacy regime (small $\epsilon$), the hardness depends on a coupled effect of privacy and partial information about the reward distributions. In the low-privacy regime (large $\epsilon$), bandits with $\epsilon$-global DP are not harder than the bandits without privacy. For stochastic bandits, we further propose a generic framework to design a near-optimal $\epsilon$ global DP extension of an index-based optimistic bandit algorithm. The framework consists of three ingredients: the Laplace mechanism, arm-dependent adaptive episodes, and usage of only the rewards collected in the last episode for computing private statistics. Specifically, we instantiate $\epsilon$-global DP extensions of UCB and KL-UCB algorithms, namely AdaP-UCB and AdaP-KLUCB. AdaP-KLUCB is the first algorithm that both satisfies $\epsilon$-global DP and yields a regret upper bound that matches the problem-dependent lower bound up to multiplicative constants.Show less >
Show more >We study the problem of multi-armed bandits with $\epsilon$-global Differential Privacy (DP). First, we prove the minimax and problem-dependent regret lower bounds for stochastic and linear bandits that quantify the hardness of bandits with $\epsilon$-global DP. These bounds suggest the existence of two hardness regimes depending on the privacy budget $\epsilon$. In the high-privacy regime (small $\epsilon$), the hardness depends on a coupled effect of privacy and partial information about the reward distributions. In the low-privacy regime (large $\epsilon$), bandits with $\epsilon$-global DP are not harder than the bandits without privacy. For stochastic bandits, we further propose a generic framework to design a near-optimal $\epsilon$ global DP extension of an index-based optimistic bandit algorithm. The framework consists of three ingredients: the Laplace mechanism, arm-dependent adaptive episodes, and usage of only the rewards collected in the last episode for computing private statistics. Specifically, we instantiate $\epsilon$-global DP extensions of UCB and KL-UCB algorithms, namely AdaP-UCB and AdaP-KLUCB. AdaP-KLUCB is the first algorithm that both satisfies $\epsilon$-global DP and yields a regret upper bound that matches the problem-dependent lower bound up to multiplicative constants.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03781600/document
- Open access
- Access the document
- http://arxiv.org/pdf/2209.02570
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03781600/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03781600/document
- Open access
- Access the document
- When_Privacy_Meets_Partial_Information-2.pdf
- Open access
- Access the document
- 2209.02570
- Open access
- Access the document
- document
- Open access
- Access the document