Toward Optimization of the Chemical/Elec ...
Document type :
Article dans une revue scientifique: Article original
Title :
Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries
Author(s) :
Koç, Tuncay [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Sorbonne Université [SU]
Chimie du solide et de l'énergie [CSE]
Hallot, Maxime [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Quemin, Elisa [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Chimie du solide et de l'énergie [CSE]
Hennequart, Benjamin [Auteur]
Chimie du solide et de l'énergie [CSE]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Dugas, Romain [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Abakumov, Artem [Auteur]
Skolkovo Institute of Science and Technology [Moscow] [Skoltech]
Lethien, Christophe [Auteur]
Institut universitaire de France [IUF]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tarascon, Jean-Marie [Auteur correspondant]
Collège de France - Chaire Chimie du solide et énergie
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Sorbonne Université [SU]
Chimie du solide et de l'énergie [CSE]
Hallot, Maxime [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Quemin, Elisa [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Chimie du solide et de l'énergie [CSE]
Hennequart, Benjamin [Auteur]
Chimie du solide et de l'énergie [CSE]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Dugas, Romain [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Abakumov, Artem [Auteur]
Skolkovo Institute of Science and Technology [Moscow] [Skoltech]
Lethien, Christophe [Auteur]

Institut universitaire de France [IUF]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Circuits Systèmes Applications des Micro-ondes - IEMN [CSAM - IEMN ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tarascon, Jean-Marie [Auteur correspondant]
Collège de France - Chaire Chimie du solide et énergie
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
Journal title :
ACS Energy Letters
Pages :
2979-2987
Publisher :
American Chemical Society
Publication date :
2022-09-09
ISSN :
2380-8195
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. ...
Show more >All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or LixIny negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.Show less >
Show more >All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could enable both greater energy density and safety. However, practical application of ASSBs is still being plagued by difficulties in mastering the SE–electrode interphases. This calls for a wide exploration of electrolyte candidates, among which halide-based Li+ conductors show promise despite being not stable against Li or LixIny negative electrodes, hence the need to assemble cells with a dual SE design. In the work described herein, we studied the electrochemical/chemical compatibility of Li3InCl6 against layered oxide positive electrode (LiNi0.6Mn0.2Co0.2O2, NMC622), carbon additive, and Li6PS5Cl under both cycling and aging conditions. Combining electroanalytical and spectroscopic techniques, we provide evidence for the onset of electrochemically driven parasitic decomposition reactions between Li3InCl6 and NMC622/carbon at lower potentials (3.3 V vs LiIn/In) than theoretically predicted in the literature. Moreover, to combat chemical incompatibility between dual SEs, we propose a new strategy that consists of depositing a nanometer-thick (1 or 2 nm) surface protective layer of Li3PO4 made by atomic layer deposition between Li3InCl6 and Li6PS5Cl. Through this surface engineering process with highly conformal and pinhole-free thin films, halide-based solid-state cells showing spectacular capacity retention over 400 cycles were successfully assembled. Altogether, these findings position halide SEs as serious contenders for the development of ASSBs.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :