• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing MOEA/D with Learning: Application ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
DOI :
10.1145/3520304.3528909
Title :
Enhancing MOEA/D with Learning: Application to Routing Problems with Time Windows
Author(s) :
Legrand, Clément [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Cattaruzza, Diego [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Jourdan, Laetitia [Auteur] refId
Operational Research, Knowledge And Data [ORKAD]
Kessaci, Marie-Eléonore [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Conference title :
GECCO '22: Genetic and Evolutionary Computation Conference
City :
Boston
Country :
Etats-Unis d'Amérique
Start date of the conference :
2022-07-09
Publication date :
2022-07-09
English keyword(s) :
Machine Learning
Hybridization
Multi-objective optimization
Operations research
Routing and layout
HAL domain(s) :
Informatique [cs]
English abstract : [en]
Integrating machine learning (ML) techniques into metaheuristics is an efficient approach in single-objective optimization. Indeed, high-quality solutions often contain relevant knowledge, that can be used to guide the ...
Show more >
Integrating machine learning (ML) techniques into metaheuristics is an efficient approach in single-objective optimization. Indeed, high-quality solutions often contain relevant knowledge, that can be used to guide the heuristic towards promising areas. In multiobjective optimization, the quality of solutions is evaluated according to multiple criteria that are generally conflicting. Therefore, the ML techniques designed for single-objective optimization can not be directly adapted for multi-objective optimization. In this paper, we propose to enhance the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) with a clustering-based learning mechanism. To be more precise, solutions are grouped regarding a metric based on their quality on each criterion, and the knowledge from the solutions of the same group is merged. Experiments are conducted on the multi-objective vehicle routing problem with time windows. The results show that MOEA/D with learning outperforms the original version.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03791804/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03791804/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03791804/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017