Utilization of Catechol End-Functionalized ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Utilization of Catechol End-Functionalized PMMA as a Macromolecular Coupling Agent for Ceramic/Fluoropolymer Piezoelectric Composites
Auteur(s) :
Bouad, Vincent [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Fadel, Alexandre [Auteur]
Mohan, Saj [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hamieh, Arthur [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tahon, Jean-Francois [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Da Costa, Antonio [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Ferri, Anthony [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Desfeux, Rachel [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Ponchel, Freddy [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Remiens, Denis [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Ladmiral, Vincent [Auteur]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations (UMET) - UMR 8207
Fadel, Alexandre [Auteur]
Mohan, Saj [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hamieh, Arthur [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tahon, Jean-Francois [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Da Costa, Antonio [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Ferri, Anthony [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Desfeux, Rachel [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Ponchel, Freddy [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Remiens, Denis [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Ladmiral, Vincent [Auteur]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Titre de la revue :
ACS Applied Polymer Materials
Nom court de la revue :
ACS Appl. Polym. Mater.
Numéro :
4
Pagination :
7258–7267
Éditeur :
American Chemical Society (ACS)
Date de publication :
2022-09-27
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
Résumé en anglais : [en]
An approach based on the use of a macromolecular coupling agent and the aim to improve the interfacial adhesion between piezoelectric ceramics and piezoelectric polymer matrix in piezoelectric composites is presented. ...
Lire la suite >An approach based on the use of a macromolecular coupling agent and the aim to improve the interfacial adhesion between piezoelectric ceramics and piezoelectric polymer matrix in piezoelectric composites is presented. Poly(methyl methacrylate) (PMMA) bearing a catechol moiety was used as a macromolecular coupling agent, as it is known to be miscible to piezoelectric fluoropolymers and catechol groups can strongly bind to a large variety of surfaces. Thus, entanglement between the PMMA chains and the amorphous segments of the fluoropolymer would ensure the desired interfacial adhesion. Well-defined PMMA was synthesized via RAFT polymerization using 2-cyano-2-propyl dodecyl trithiocarbonate as a chain-transfer agent. The PMMA ω-chain end was then functionalized with a catechol group via a one-pot aminolysis/thia-Michael addition procedure using a dopamine acrylamide (DA) derivative as a Michael acceptor. The presence of the catechol moiety at the chain end of PMMA was controlled by 1H NMR and cyclic voltammetry measurements. The resulting PMMA-DA was then grafted onto the surface of a lead-free piezoelectric ceramic film (i.e., a thin film of H2O2-activated (Bi0.5Na0.5)TiO3 (BNT) with a large contact area). The increase of the water contact angle confirmed the efficiency of the grafting. A commercial piezoelectric copolymer P(VDF-co-TrFE) was then spin-coated onto the modified BNT surface to form a bilayer composite. The composite cross section prepared by cryofracture was examined by scanning electron microscopy and revealed that the ceramic/polymer interface of the BNT-PMMA/P(VDF-co-TrFE) bilayer composite exhibits a much better cohesion than its counterpart composite prepared from nonmodified BNT. Moreover, the grazing incidence wide-angle X-ray scattering confirmed that the copolymer crystal structure was not impacted by the presence of the PMMA-DA coupling agent. A strong piezoelectric response was locally detected by piezoresponse force microscopy. This study highlights the potential of PMMA-DA as a macromolecular coupling agent to improve the ceramic/polymer interface in piezoelectric composite materials.Lire moins >
Lire la suite >An approach based on the use of a macromolecular coupling agent and the aim to improve the interfacial adhesion between piezoelectric ceramics and piezoelectric polymer matrix in piezoelectric composites is presented. Poly(methyl methacrylate) (PMMA) bearing a catechol moiety was used as a macromolecular coupling agent, as it is known to be miscible to piezoelectric fluoropolymers and catechol groups can strongly bind to a large variety of surfaces. Thus, entanglement between the PMMA chains and the amorphous segments of the fluoropolymer would ensure the desired interfacial adhesion. Well-defined PMMA was synthesized via RAFT polymerization using 2-cyano-2-propyl dodecyl trithiocarbonate as a chain-transfer agent. The PMMA ω-chain end was then functionalized with a catechol group via a one-pot aminolysis/thia-Michael addition procedure using a dopamine acrylamide (DA) derivative as a Michael acceptor. The presence of the catechol moiety at the chain end of PMMA was controlled by 1H NMR and cyclic voltammetry measurements. The resulting PMMA-DA was then grafted onto the surface of a lead-free piezoelectric ceramic film (i.e., a thin film of H2O2-activated (Bi0.5Na0.5)TiO3 (BNT) with a large contact area). The increase of the water contact angle confirmed the efficiency of the grafting. A commercial piezoelectric copolymer P(VDF-co-TrFE) was then spin-coated onto the modified BNT surface to form a bilayer composite. The composite cross section prepared by cryofracture was examined by scanning electron microscopy and revealed that the ceramic/polymer interface of the BNT-PMMA/P(VDF-co-TrFE) bilayer composite exhibits a much better cohesion than its counterpart composite prepared from nonmodified BNT. Moreover, the grazing incidence wide-angle X-ray scattering confirmed that the copolymer crystal structure was not impacted by the presence of the PMMA-DA coupling agent. A strong piezoelectric response was locally detected by piezoresponse force microscopy. This study highlights the potential of PMMA-DA as a macromolecular coupling agent to improve the ceramic/polymer interface in piezoelectric composite materials.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Couches minces & nanomatériaux (CMNM)
Couches minces & nanomatériaux (CMNM)
Date de dépôt :
2022-10-06T11:13:58Z
2022-10-06T12:31:40Z
2022-10-17T13:09:29Z
2022-10-27T09:31:07Z
2022-10-06T12:31:40Z
2022-10-17T13:09:29Z
2022-10-27T09:31:07Z