• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards an efficient and risk aware strategy ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
Towards an efficient and risk aware strategy for guiding farmers in identifying best crop management
Author(s) :
Gautron, Romain [Auteur]
Agroécologie et Intensification Durables des cultures annuelles [UPR AIDA]
Baudry, Dorian [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Adam, Myriam [Auteur]
Amélioration génétique et adaptation des plantes méditerranéennes et tropicales [UMR AGAP]
Falconnier, Gatien [Auteur]
Agroécologie et Intensification Durables des cultures annuelles [UPR AIDA]
International Maize and Wheat Improvement Center [Zimbabwe] [CIMMYT]
Corbeels, Marc [Auteur]
Agroécologie et Intensification Durables des cultures annuelles [UPR AIDA]
International Institute of Tropical Agriculture [IITA Kenya]
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Sciences du Vivant [q-bio]/Sciences agricoles/Agronomie
English abstract : [en]
Identification of best performing fertilizer practices among a set of contrasting practices with field trials is challenging as crop losses are costly for farmers. To identify best management practices, an "intuitive ...
Show more >
Identification of best performing fertilizer practices among a set of contrasting practices with field trials is challenging as crop losses are costly for farmers. To identify best management practices, an "intuitive strategy" would be to set multi-year field trials with equal proportion of each practice to test. Our objective was to provide an identification strategy using a bandit algorithm that was better at minimizing farmers' losses occurring during the identification, compared with the "intuitive strategy". We used a modification of the Decision Support Systems for Agro-Technological Transfer (DSSAT) crop model to mimic field trial responses, with a case-study in Southern Mali. We compared fertilizer practices using a risk-aware measure, the Conditional Value-at-Risk (CVaR), and a novel agronomic metric, the Yield Excess (YE). YE accounts for both grain yield and agronomic nitrogen use efficiency. The bandit-algorithm performed better than the intuitive strategy: it increased, in most cases, farmers' protection against worst outcomes. This study is a methodological step which opens up new horizons for risk-aware ensemble identification of the performance of contrasting crop management practices in real conditions.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://hal.cirad.fr/cirad-03806634/document
  • Open access
  • Access the document
Thumbnail
  • http://hal.cirad.fr/cirad-03806634/file/main.pdf
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/2210.04537
  • Open access
  • Access the document
Thumbnail
  • http://hal.cirad.fr/cirad-03806634/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • batch_ferti.pdf
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Thumbnail
  • 2210.04537
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • batch_ferti.pdf
  • Open access
  • Access the document
Thumbnail
  • main.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017