Robust finite-frequency H-infinity model ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Robust finite-frequency H-infinity model reduction for uncertain 2D discrete systems
Author(s) :
El-Amrani, Abderrahim [Auteur]
LESSI-départment de physique
El Hajjaji, Ahmed [Auteur]
Modélisation, Information et Systèmes - UR UPJV 4290 [MIS]
Bosche, Jerome [Auteur]
Modélisation, Information et Systèmes - UR UPJV 4290 [MIS]
Aitouche, Abdel [Auteur]
JUNIA [JUNIA]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
LESSI-départment de physique
El Hajjaji, Ahmed [Auteur]
Modélisation, Information et Systèmes - UR UPJV 4290 [MIS]
Bosche, Jerome [Auteur]
Modélisation, Information et Systèmes - UR UPJV 4290 [MIS]
Aitouche, Abdel [Auteur]
JUNIA [JUNIA]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED)
City :
Athènes
Country :
Grèce
Start date of the conference :
2022-06-28
Publisher :
IEEE
Publication date :
2022
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design ...
Show more >In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design a reduced order model minimizing H-infinity performance in a known finite-frequency (FF) area of the noises able to reproduce the behavior of the uncertain 2D original system. Using Lyapunov function and generalized Kalman Yakubovich Popov (gKYP) lemma, sufficient conditions for the existence of the FF reduced order design approach are formulated as feasibility of a set of Linear Matrix Inequalities (LMIs). Numerical simulations are given to illustrate the validity and feasibility of the designed reduced-order model.Show less >
Show more >In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design a reduced order model minimizing H-infinity performance in a known finite-frequency (FF) area of the noises able to reproduce the behavior of the uncertain 2D original system. Using Lyapunov function and generalized Kalman Yakubovich Popov (gKYP) lemma, sufficient conditions for the existence of the FF reduced order design approach are formulated as feasibility of a set of Linear Matrix Inequalities (LMIs). Numerical simulations are given to illustrate the validity and feasibility of the designed reduced-order model.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
30th Mediterranean Conference on Control and Automation (MED), Athens, GREECE, JUN 28-JUL 01, 2022
Collections :
Source :