• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Progressive Layer-based Compression for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
Progressive Layer-based Compression for Convolutional Spiking Neural Network
Author(s) :
Elbez, Hammouda [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Fatahi, Mazdak [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
English keyword(s) :
Spiking Neural Network
Neuromorphic Computing
Compression
STDP
SpiNNaker
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Apprentissage [cs.LG]
English abstract : [en]
Spiking neural networks (SNNs) have attracted interest in recent years due to their low energy consumption and the increasing need for more power in real-life ML-related applications. Having those bio-inspired networks on ...
Show more >
Spiking neural networks (SNNs) have attracted interest in recent years due to their low energy consumption and the increasing need for more power in real-life ML-related applications. Having those bio-inspired networks on neuromorphic hardware for extra-low energy consumption is another exciting aspect of this technology. Furthermore, many works discuss the improvement of SNNs in terms of performance and hardware implementation. This paper presents a progressive layer-based compression approach applied to convolutional spiking neural networks trained with unsupervised STDP. Moreover, we study the effect of this approach when used with SpiNNaker. This approach, inspired by neuroplasticity, produces highly compressed networks (up to 90% compression rate) while preserving the same network performance or slightly improving it, as shown by experimental results using MNIST, FMNIST, Caltech face/motorbike, STL-10, and CIFAR-10 datasets.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03826823/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03826823/file/SupplementaryMaterial.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017