Multi-Objective Optimization of the ...
Document type :
Communication dans un congrès avec actes
DOI :
Permalink :
Title :
Multi-Objective Optimization of the Nanocavities Diffusion in Irradiated Metals
Author(s) :
Debacker, Andrée [Auteur]
Physique des interactions ioniques et moléculaires [PIIM]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Souidi, Abdelkader [Auteur]
Université de Saïda Dr. Moulay Tahar
Hodille, Etienne A. [Auteur]
Institut de Recherche sur la Fusion par confinement Magnétique [IRFM]
Autissier, Emmanuel [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Genevois, Cécile [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Haddad, Farah [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Della Noce, Antonin [Auteur]
Biomarqueurs prédictifs et nouvelles stratégies moléculaires en thérapeutique anticancéreuse [U981]
Domain, Christophe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Barthe, Marie France [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Physique des interactions ioniques et moléculaires [PIIM]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Souidi, Abdelkader [Auteur]
Université de Saïda Dr. Moulay Tahar
Hodille, Etienne A. [Auteur]
Institut de Recherche sur la Fusion par confinement Magnétique [IRFM]
Autissier, Emmanuel [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Genevois, Cécile [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Haddad, Farah [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Della Noce, Antonin [Auteur]
Biomarqueurs prédictifs et nouvelles stratégies moléculaires en thérapeutique anticancéreuse [U981]
Domain, Christophe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Barthe, Marie France [Auteur]
Conditions Extrêmes et Matériaux : Haute Température et Irradiation [CEMHTI]
Conference title :
MaxEnt 2022
City :
PARIS
Country :
France
Start date of the conference :
2022-07-18
Journal title :
Physical Sciences Forum
Abbreviated title :
Phys. Sci. Forum
Publisher :
MDPI
Publication date :
2023-01-06
English keyword(s) :
inverse problems
multiobjective optimisation
microstructure evolution
irradiated materials
nanocavity diffusion
multiobjective optimisation
microstructure evolution
irradiated materials
nanocavity diffusion
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
Materials in fission reactors or fusion tokamaks are exposed to neutron irradiation, which creates defects in the microstructure. With time, depending on the temperature, defects diffuse and form, among others, nanocavities, ...
Show more >Materials in fission reactors or fusion tokamaks are exposed to neutron irradiation, which creates defects in the microstructure. With time, depending on the temperature, defects diffuse and form, among others, nanocavities, altering the material performance. The goal of this work is to determine the diffusion properties of the nanocavities in tungsten. We combine (i) a systematic experimental study in irradiated samples annealed at different temperatures up to 1800 K (the created nanocavities diffuse, and their coalescence is studied by transmission electron microscopy); (ii) our object kinetic Monte Carlo model of the microstructure evolution fed by a large collection of atomistic data; and (iii) a multi-objective optimization method (using model inversion) to obtain the diffusion of nanocavities, input parameters of our model, from the comparison with the experimental observations. We simplify the multi-objective function, proposing a projection into the parameter space. Non-dominated solutions are revealed: two “valleys” of minima corresponding to the nanocavities density and size objectives, respectively, which delimit the Pareto optimal solution. These “valleys” are found to be the upper and lower uncertainties on the diffusion beyond the uncertainties on the experimental and simulated results. The nanocavity diffusion can be split in three domains: the mono vacancy and small vacancy clusters, for which atomistic models are affordable, the small nanocavities for which our approach is decisive, and the nanocavities larger than 1.5 nm for which the classical surface diffusion theory is valid.Show less >
Show more >Materials in fission reactors or fusion tokamaks are exposed to neutron irradiation, which creates defects in the microstructure. With time, depending on the temperature, defects diffuse and form, among others, nanocavities, altering the material performance. The goal of this work is to determine the diffusion properties of the nanocavities in tungsten. We combine (i) a systematic experimental study in irradiated samples annealed at different temperatures up to 1800 K (the created nanocavities diffuse, and their coalescence is studied by transmission electron microscopy); (ii) our object kinetic Monte Carlo model of the microstructure evolution fed by a large collection of atomistic data; and (iii) a multi-objective optimization method (using model inversion) to obtain the diffusion of nanocavities, input parameters of our model, from the comparison with the experimental observations. We simplify the multi-objective function, proposing a projection into the parameter space. Non-dominated solutions are revealed: two “valleys” of minima corresponding to the nanocavities density and size objectives, respectively, which delimit the Pareto optimal solution. These “valleys” are found to be the upper and lower uncertainties on the diffusion beyond the uncertainties on the experimental and simulated results. The nanocavity diffusion can be split in three domains: the mono vacancy and small vacancy clusters, for which atomistic models are affordable, the small nanocavities for which our approach is decisive, and the nanocavities larger than 1.5 nm for which the classical surface diffusion theory is valid.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortiumNuméro CORDIS : 633053
Safe long term operation of light water reactors based on improved understanding of radiation effects in nuclear structural materials
Safe long term operation of light water reactors based on improved understanding of radiation effects in nuclear structural materials
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Métallurgie Physique et Génie des Matériaux
Submission date :
2023-01-09T07:39:44Z
2023-01-10T08:43:26Z
2023-02-27T14:09:30Z
2023-01-10T08:43:26Z
2023-02-27T14:09:30Z
Files
- Multi-Objective Optimization of the Nanocavities Diffusion in irradiated metals.pdf
- Version éditeur
- Open access
- Access the document