Milling-Assisted Loading of Drugs into ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery
Author(s) :
Moutamenni, Basma [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Tabary, Nicolas [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Dhainaut, Jeremy [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Ciotonea, Carmen [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Fadel, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Tabary, Nicolas [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Dhainaut, Jeremy [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Ciotonea, Carmen [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Fadel, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Pharmaceutics
Abbreviated title :
Pharmaceutics
Volume number :
15
Pages :
390
Publisher :
MDPI AG
Publication date :
2023-01-24
ISSN :
1999-4923
English keyword(s) :
milling
physical state
low-frequency Raman spectroscopy
scanning electron microscopy
drug release profiles
physical state
low-frequency Raman spectroscopy
scanning electron microscopy
drug release profiles
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Chimie/Catalyse
Chimie/Polymères
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Chimie/Catalyse
English abstract : [en]
Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free ...
Show more >Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free method (milling-assisted loading, MAL) made it possible to manipulate the physical state of the drug within the pores. The present study focuses on the effects of the milling intensity and the pore architecture (chemical surface) on the physical state of the confined drug and its release profile. Ibuprofen (IBP) and SBA-15 were used as the model drug and the MPS carrier, respectively. It was found that decreasing the milling intensity promotes nanocrystallization of confined IBP. Scanning electron microscopy and low-frequency Raman spectroscopy investigations converged into a bimodal description of the size distribution of particles, by decreasing the milling intensity. The chemical modification of the pore surface with 3-aminopropyltriethoxisylane also significantly promoted nanocrystallization, regardless of the milling intensity. Combined analyses of drug release profiles obtained on composites prepared from unmodified and modified SBA-15 with various milling intensities showed that the particle size of composites has the greatest influence on the drug release profile. Tuning drug concentration, milling intensity, and chemical surface make it possible to easily customize drug delivery.Show less >
Show more >Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free method (milling-assisted loading, MAL) made it possible to manipulate the physical state of the drug within the pores. The present study focuses on the effects of the milling intensity and the pore architecture (chemical surface) on the physical state of the confined drug and its release profile. Ibuprofen (IBP) and SBA-15 were used as the model drug and the MPS carrier, respectively. It was found that decreasing the milling intensity promotes nanocrystallization of confined IBP. Scanning electron microscopy and low-frequency Raman spectroscopy investigations converged into a bimodal description of the size distribution of particles, by decreasing the milling intensity. The chemical modification of the pore surface with 3-aminopropyltriethoxisylane also significantly promoted nanocrystallization, regardless of the milling intensity. Combined analyses of drug release profiles obtained on composites prepared from unmodified and modified SBA-15 with various milling intensities showed that the particle size of composites has the greatest influence on the drug release profile. Tuning drug concentration, milling intensity, and chemical surface make it possible to easily customize drug delivery.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Matériaux Moléculaires et Thérapeutiques
Matériaux pour la catalyse (MATCAT)
Matériaux Moléculaires et Thérapeutiques
Matériaux pour la catalyse (MATCAT)
Submission date :
2023-01-26T09:12:06Z
2023-01-26T09:27:16Z
2023-01-27T07:57:39Z
2023-01-27T07:58:33Z
2023-01-27T08:18:48Z
2023-01-26T09:27:16Z
2023-01-27T07:57:39Z
2023-01-27T07:58:33Z
2023-01-27T08:18:48Z
Files
- pharmaceutics-15-00390.pdf
- Version éditeur
- Open access
- Access the document