Milling-Assisted Loading of Drugs into ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Milling-Assisted Loading of Drugs into Mesoporous Silica Carriers: A Green and Simple Method for Obtaining Tunable Customized Drug Delivery
Auteur(s) :
Moutamenni, Basma [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Tabary, Nicolas [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Dhainaut, Jeremy [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Ciotonea, Carmen [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Fadel, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Tabary, Nicolas [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Dhainaut, Jeremy [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Ciotonea, Carmen [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Fadel, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
Pharmaceutics
Nom court de la revue :
Pharmaceutics
Numéro :
15
Pagination :
390
Éditeur :
MDPI AG
Date de publication :
2023-01-24
ISSN :
1999-4923
Mot(s)-clé(s) en anglais :
milling
physical state
low-frequency Raman spectroscopy
scanning electron microscopy
drug release profiles
physical state
low-frequency Raman spectroscopy
scanning electron microscopy
drug release profiles
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Chimie/Catalyse
Chimie/Polymères
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Chimie/Catalyse
Résumé en anglais : [en]
Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free ...
Lire la suite >Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free method (milling-assisted loading, MAL) made it possible to manipulate the physical state of the drug within the pores. The present study focuses on the effects of the milling intensity and the pore architecture (chemical surface) on the physical state of the confined drug and its release profile. Ibuprofen (IBP) and SBA-15 were used as the model drug and the MPS carrier, respectively. It was found that decreasing the milling intensity promotes nanocrystallization of confined IBP. Scanning electron microscopy and low-frequency Raman spectroscopy investigations converged into a bimodal description of the size distribution of particles, by decreasing the milling intensity. The chemical modification of the pore surface with 3-aminopropyltriethoxisylane also significantly promoted nanocrystallization, regardless of the milling intensity. Combined analyses of drug release profiles obtained on composites prepared from unmodified and modified SBA-15 with various milling intensities showed that the particle size of composites has the greatest influence on the drug release profile. Tuning drug concentration, milling intensity, and chemical surface make it possible to easily customize drug delivery.Lire moins >
Lire la suite >Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free method (milling-assisted loading, MAL) made it possible to manipulate the physical state of the drug within the pores. The present study focuses on the effects of the milling intensity and the pore architecture (chemical surface) on the physical state of the confined drug and its release profile. Ibuprofen (IBP) and SBA-15 were used as the model drug and the MPS carrier, respectively. It was found that decreasing the milling intensity promotes nanocrystallization of confined IBP. Scanning electron microscopy and low-frequency Raman spectroscopy investigations converged into a bimodal description of the size distribution of particles, by decreasing the milling intensity. The chemical modification of the pore surface with 3-aminopropyltriethoxisylane also significantly promoted nanocrystallization, regardless of the milling intensity. Combined analyses of drug release profiles obtained on composites prepared from unmodified and modified SBA-15 with various milling intensities showed that the particle size of composites has the greatest influence on the drug release profile. Tuning drug concentration, milling intensity, and chemical surface make it possible to easily customize drug delivery.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Matériaux Moléculaires et Thérapeutiques
Matériaux pour la catalyse (MATCAT)
Matériaux Moléculaires et Thérapeutiques
Matériaux pour la catalyse (MATCAT)
Date de dépôt :
2023-01-26T09:12:06Z
2023-01-26T09:27:16Z
2023-01-27T07:57:39Z
2023-01-27T07:58:33Z
2023-01-27T08:18:48Z
2023-01-26T09:27:16Z
2023-01-27T07:57:39Z
2023-01-27T07:58:33Z
2023-01-27T08:18:48Z
Fichiers
- pharmaceutics-15-00390.pdf
- Version éditeur
- Accès libre
- Accéder au document