Preparation of Flower-Shaped Co-Fe Layer ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Preparation of Flower-Shaped Co-Fe Layer Double Hydroxide Nanosheets Loaded with Pt Nanoparticles by Corrosion Engineering for Efficient Electrocatalytic Water Splitting
Auteur(s) :
Zhang, Zhaohui [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Zhang, Yi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Barras, Alexandre [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Tang, L. C. [Auteur]
Hangzhou Normal University
Amin, M. A. [Auteur]
Taif University [TU]
Szunerits, Sabine [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Boukherroub, Rabah [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Zhang, Yi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Barras, Alexandre [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Tang, L. C. [Auteur]
Hangzhou Normal University
Amin, M. A. [Auteur]
Taif University [TU]
Szunerits, Sabine [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Boukherroub, Rabah [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Titre de la revue :
ACS APPLIED ENERGY MATERIALS
Nom court de la revue :
ACS Appl Energ Mater
Date de publication :
2022-12-12
ISSN :
2574-0962
Mot(s)-clé(s) :
oxygen corrosion technology
iron foam
Co/Fe LDH
Pt nanoparticles
hydrogen evolution reaction
oxygen evolution reaction
iron foam
Co/Fe LDH
Pt nanoparticles
hydrogen evolution reaction
oxygen evolution reaction
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
The development of high-performance and cost-effective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts is highly required for electrochemical water splitting. The sluggish reaction ...
Lire la suite >The development of high-performance and cost-effective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts is highly required for electrochemical water splitting. The sluggish reaction kinetics, poor stability, and complicated processing restrict the practical application of most electrocatalysts. Herein, we report a facile oxygen corrosion strategy for the fabrication of Pt nanoparticles loaded on cobalt-iron layer double hydroxide (Pt-Co/Fe LDH) on iron foam using an oxygen corrosion method regulated by sodium chloride (NaCl). The as-prepared Pt-Co/Fe LDH electrodes feature overpotentials as low as 126 and 285 mV to deliver 100 mA cm–2 for HER and OER, respectively. Moreover, the Pt-Co/Fe LDH was applied as anode and cathode in an electrochemical electrolyzer and recorded a current density of 50 mA cm–2 at a small voltage of 1.66 V, which is superior to that of the Pt/C-FF || RuO2-FF system (1.89 V) and those of most previously reported electrocatalysts. The excellent electrocatalytic activity of Pt-Co/Fe LDH could be assigned to its specific structure, consisting of three-dimensional (3D) nanoflower-shaped nanosheets, favorable for promoting fast mass transport and ion diffusion and generating more active sites for the OER process. In addition, the synergistic effect between Pt and the Co/Fe LDH heterojunction structure effectively improves the electronic conductivity and H adsorption for HER performance. The oxygen corrosion method regulated by NaCl and interface engineering of the LDH structure is simple to implement and can be easily extended for the preparation of a plethora of other bifunctional and cost-effective electrocatalysts for various electrochemical processes.Lire moins >
Lire la suite >The development of high-performance and cost-effective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts is highly required for electrochemical water splitting. The sluggish reaction kinetics, poor stability, and complicated processing restrict the practical application of most electrocatalysts. Herein, we report a facile oxygen corrosion strategy for the fabrication of Pt nanoparticles loaded on cobalt-iron layer double hydroxide (Pt-Co/Fe LDH) on iron foam using an oxygen corrosion method regulated by sodium chloride (NaCl). The as-prepared Pt-Co/Fe LDH electrodes feature overpotentials as low as 126 and 285 mV to deliver 100 mA cm–2 for HER and OER, respectively. Moreover, the Pt-Co/Fe LDH was applied as anode and cathode in an electrochemical electrolyzer and recorded a current density of 50 mA cm–2 at a small voltage of 1.66 V, which is superior to that of the Pt/C-FF || RuO2-FF system (1.89 V) and those of most previously reported electrocatalysts. The excellent electrocatalytic activity of Pt-Co/Fe LDH could be assigned to its specific structure, consisting of three-dimensional (3D) nanoflower-shaped nanosheets, favorable for promoting fast mass transport and ion diffusion and generating more active sites for the OER process. In addition, the synergistic effect between Pt and the Co/Fe LDH heterojunction structure effectively improves the electronic conductivity and H adsorption for HER performance. The oxygen corrosion method regulated by NaCl and interface engineering of the LDH structure is simple to implement and can be easily extended for the preparation of a plethora of other bifunctional and cost-effective electrocatalysts for various electrochemical processes.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Date de dépôt :
2023-03-09T01:26:10Z
2023-03-23T09:09:39Z
2023-03-23T09:17:25Z
2023-03-23T09:09:39Z
2023-03-23T09:17:25Z