• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Realization Theory Of Recurrent Neural ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings
Author(s) :
Gonzalez, Martin [Auteur]
IRT SystemX
Defourneau, Thibault [Auteur]
Hajri, Hatem [Auteur]
IRT SystemX
Petreczky, Mihaly [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Journal title :
Systems & Control Letters
Pages :
105468
Publication date :
2023-03-01
English keyword(s) :
Realization theory
Neural ODEs
Recurrent Neural Networks
Long Short-Term Memory
System Identification
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Automatique
English abstract : [en]
In this paper we show that neural ODE analogs of recurrent (ODE-RNN) and Long Short-Term Memory (ODE-LSTM) networks can be algorithmically embedded into the class of polynomial systems. This embedding preserves input-output ...
Show more >
In this paper we show that neural ODE analogs of recurrent (ODE-RNN) and Long Short-Term Memory (ODE-LSTM) networks can be algorithmically embedded into the class of polynomial systems. This embedding preserves input-output behavior and can suitably be extended to other neural DE architectures. We then use realization theory of polynomial systems to provide necessary conditions for an input-output map to be realizable by an ODE-LSTM and sufficient conditions for minimality of such systems. These results represent the first steps towards realization theory of recurrent neural ODE architectures, which is is expected be useful for model reduction and learning algorithm analysis of recurrent neural ODEs.Show less >
Language :
Anglais
Popular science :
Non
Comment :
10 pages. Corrected typos and added references
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • 2205.11989.pdf
  • Open access
  • Access the document
Thumbnail
  • 2205.11989
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017