• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainable root cause and pathway analysis ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.compind.2022.103770
Title :
Explainable root cause and pathway analysis with robust and adaptive statistics
Author(s) :
Atoui, Mohamed Amine [Auteur]
Télécommunication, Interférences et Compatibilité Electromagnétique - IEMN [TELICE - IEMN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cocquempot, Vincent [Auteur correspondant] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Journal title :
Computers in Industry
Pages :
103770
Publisher :
Elsevier
Publication date :
2023-01
ISSN :
0166-3615
English keyword(s) :
Process monitoring
Root cause identification
Bayesian belief network
HAL domain(s) :
Sciences de l'ingénieur [physics]
Informatique [cs]/Automatique
Sciences de l'ingénieur [physics]/Automatique / Robotique
Statistiques [stat]/Applications [stat.AP]
English abstract : [en]
Accurate detection of faults is desired to reduce risks and costs. The identification of the propagation path of faults and the system’s variables responsible of faulty operating conditions is also paramount. This paper ...
Show more >
Accurate detection of faults is desired to reduce risks and costs. The identification of the propagation path of faults and the system’s variables responsible of faulty operating conditions is also paramount. This paper presents a new alternative to a well-known Bayesian network-based approach to detect and identify root causes in multivariate processes. It deals with the complexity generated by the use of Bayesian network in terms of structure and decision making. The new strategy is straightforward and based on statistical foundations. The new approach revives the interest of Mason, Young and Tracy (MYT) decomposition of quadratic statistics and alleviates considerably the complexity of their upgrades. Comparison with previous approaches and performance evaluation using the Tennessee Eastman process demonstrate the feasibility and interest of the new proposal.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017