Novel opto-fluidic drug delivery system ...
Document type :
Compte-rendu et recension critique d'ouvrage
PMID :
Title :
Novel opto-fluidic drug delivery system for efficient cellular transfection
Author(s) :
Layachi, Majid []
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire Charles Coulomb [L2C]
Treizebre, Anthony [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Hay, Laurent [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Gilbert, David [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Pesez, Jean [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
D’acremont, Quentin [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Braeckmans, Kevin [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Thommen, Quentin [Auteur]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Courtade, Emmanuel [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire Charles Coulomb [L2C]
Treizebre, Anthony [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Hay, Laurent [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Gilbert, David [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Pesez, Jean [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
D’acremont, Quentin [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Braeckmans, Kevin [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Thommen, Quentin [Auteur]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Courtade, Emmanuel [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Journal title :
Journal of Nanobiotechnology
Pages :
43
Publisher :
BioMed Central
Publication date :
2023
ISSN :
1477-3155
English keyword(s) :
Photoporation
Vapour nanobubbles
Microfuidics
High-throughput intracellular delivery
Nanoparticle micro-positioning
Vapour nanobubbles
Microfuidics
High-throughput intracellular delivery
Nanoparticle micro-positioning
HAL domain(s) :
Sciences du Vivant [q-bio]/Sciences pharmaceutiques
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
Abstract Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made ...
Show more >Abstract Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made consistent progress. However, state-of-the-art techniques based on non-viral carriers or physical methods suffer several drawbacks, including limited delivery yield, low throughput or low viability, which are key parameters in therapeutics, diagnostics and drug delivery. Nevertheless, gold nanoparticle (AuNP) mediated photoporation has stood out as a promising approach to permeabilize cell membranes through laser induced Vapour NanoBubble (VNB) generation, allowing the influx of external cargo molecules into cells. However, its use as a transfection technology for the genetic manipulation of therapeutic cells is hindered by the presence of non-degradable gold nanoparticles. Here, we report a new optofluidic method bringing gold nanoparticles in close proximity to cells for photoporation, while avoiding direct contact with cells by taking advantage of hydrodynamic focusing in a multi-flow device. Cells were successfully photoporated with $$\sim {70}{\%}$$ ∼ 70 % efficiency with no significant reduction in cell viability at a throughput ranging from $$10^3$$ 10 3 to $$10^4~\text {cells}~{\hbox {min}^{-1}}$$ 10 4 cells min - 1 . This optofluidic approach provides prospects of translating photoporation from an R &D setting to clinical use for producing genetically engineered therapeutic cells.Show less >
Show more >Abstract Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made consistent progress. However, state-of-the-art techniques based on non-viral carriers or physical methods suffer several drawbacks, including limited delivery yield, low throughput or low viability, which are key parameters in therapeutics, diagnostics and drug delivery. Nevertheless, gold nanoparticle (AuNP) mediated photoporation has stood out as a promising approach to permeabilize cell membranes through laser induced Vapour NanoBubble (VNB) generation, allowing the influx of external cargo molecules into cells. However, its use as a transfection technology for the genetic manipulation of therapeutic cells is hindered by the presence of non-degradable gold nanoparticles. Here, we report a new optofluidic method bringing gold nanoparticles in close proximity to cells for photoporation, while avoiding direct contact with cells by taking advantage of hydrodynamic focusing in a multi-flow device. Cells were successfully photoporated with $$\sim {70}{\%}$$ ∼ 70 % efficiency with no significant reduction in cell viability at a throughput ranging from $$10^3$$ 10 3 to $$10^4~\text {cells}~{\hbox {min}^{-1}}$$ 10 4 cells min - 1 . This optofluidic approach provides prospects of translating photoporation from an R &D setting to clinical use for producing genetically engineered therapeutic cells.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- document
- Open access
- Access the document
- Layachi_2023_s12951-023-01797-3.pdf
- Open access
- Access the document
- Open access
- Access the document
- document
- Open access
- Access the document
- Layachi_2023_s12951-023-01797-3.pdf
- Open access
- Access the document