• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning-based hard spatial attention ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1016/j.eswa.2023.119629
Title :
Deep learning-based hard spatial attention for driver in-vehicle action monitoring
Author(s) :
Jegham, Imen [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Alouani, Lihsen [Auteur]
Queen's University [Belfast] [QUB]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ben Khalifa, Anouar [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Mahjoub, Mohamed Ali [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Journal title :
Expert Systems with Applications
Pages :
119629
Publisher :
Elsevier
Publication date :
2023-06
ISSN :
0957-4174
English keyword(s) :
Driver
Action
Recognition
In-vehicle action monitoring
Hard attention
Deep learning
Hybrid network
HAL domain(s) :
Physique [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Distracted driving is one of the main causes of deaths and injuries in the world. Monitoring driver behaviors through Driver Action Recognition (DAR) contributes significantly to building safer transportation systems. ...
Show more >
Distracted driving is one of the main causes of deaths and injuries in the world. Monitoring driver behaviors through Driver Action Recognition (DAR) contributes significantly to building safer transportation systems. However, in naturalistic driving settings, this task is complex and challenging because of numerous difficulties, such as high illumination variation and cluttered and dynamic background. In this paper, we introduce a novel hard attention network that highlights the most pertinent driving-scene information while filtering out irrelevant data. Specifically, only local discriminative salient regions are exploited through a hard attention mechanism. The experimental results indicate that our approach significantly enhances DAR performance. We evaluated our network on three diverse state-of-the-art datasets recorded in real-world conditions: it achieves up to 95.83% in terms of safe driving recognition and up to 99.07% in terms of distraction detection. The proposed approach outperforms the soft attention-based DAR not only in detection and recognition performance but also in computation complexity by 38.71% less runtime. For reproducible research, the code is available at https://github.com/JEGHAMI/HSAShow less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Files
Thumbnail
  • ESWA_Journal_clean_paper.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017