Characterizing the ZrC(111)/c-ZrO2(111) ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Characterizing the ZrC(111)/c-ZrO2(111) Hetero-Ceramic Interface: First Principles DFT and Atomistic Thermodynamic Modeling
Author(s) :
Osei-Agyemang, Eric [Auteur]
University at Buffalo [SUNY] [SUNY Buffalo]
Paul, Jean-Francois [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lucas, Romain [Auteur]
Institut de Recherche sur les CERamiques [IRCER]
Foucaud, Sylvie [Auteur]
Institut de Recherche sur les CERamiques [IRCER]
Cristol, Sylvain [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Mamede, Anne-Sophie [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Nuns, Nicolas [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
University at Buffalo [SUNY] [SUNY Buffalo]
Paul, Jean-Francois [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lucas, Romain [Auteur]
Institut de Recherche sur les CERamiques [IRCER]
Foucaud, Sylvie [Auteur]
Institut de Recherche sur les CERamiques [IRCER]
Cristol, Sylvain [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Mamede, Anne-Sophie [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Nuns, Nicolas [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Addad, Ahmed [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Molecules
Volume number :
27
Pages :
2954
Publisher :
MDPI
Publication date :
2022-05-05
ISSN :
1420-3049
English keyword(s) :
ZrC
DFT
thermodynamic
DFT
thermodynamic
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
Chimie/Catalyse
Chimie/Catalyse
English abstract : [en]
The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to ...
Show more >The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//c-ZrO2 (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO2 being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO2 layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.Show less >
Show more >The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//c-ZrO2 (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO2 being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO2 layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
ANR Project :
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Modélisation et spectroscopies (MODSPEC)
Matériaux pour la catalyse (MATCAT)
Matériaux pour la catalyse (MATCAT)
Submission date :
2023-05-30T15:15:42Z
2023-06-20T14:14:47Z
2023-06-20T14:14:47Z
Files
- Characterizing the ZrC111c-ZrO2111 Hetero-Ceramic Interface First Principles DFT and Atomistic Thermodynamic Modeling .pdf
- Version éditeur
- Open access
- Access the document