Study of reaction-diffusion controlled ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Study of reaction-diffusion controlled mass transport in stopped-flow fluidics for spatiotemporal multiplexing
Author(s) :
Tintelott, Marcel [Auteur]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Gharpure, Pradnya [Auteur]
Delft University of Technology [TU Delft]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Coffinier, Yannick [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vu, Xuan Thang [Auteur]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Vlandas, Alexis [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ingebrandt, Sven [Auteur]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Pachauri, Vivek [Auteur correspondant]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Gharpure, Pradnya [Auteur]
Delft University of Technology [TU Delft]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Coffinier, Yannick [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vu, Xuan Thang [Auteur]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Vlandas, Alexis [Auteur]

Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ingebrandt, Sven [Auteur]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Pachauri, Vivek [Auteur correspondant]
Universitätsklinikum RWTH Aachen - University Hospital Aachen [Aachen, Germany] [UKA]
Journal title :
Physics of Fluids
Publisher :
American Institute of Physics
Publication date :
2023-04-01
ISSN :
1070-6631
English keyword(s) :
Finite-element analysis
Finite volume methods
Diffusion barriers
Mass diffusivity
Detection limit
Fluidics
Microfluidics
Finite volume methods
Diffusion barriers
Mass diffusivity
Detection limit
Fluidics
Microfluidics
HAL domain(s) :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Integration of biochemical reaction networks (BRNs) with biosensor platforms has emerged as a technological niche overcoming challenges related to the loss of sensitivity and selectivity in biological media. Optimal operation ...
Show more >Integration of biochemical reaction networks (BRNs) with biosensor platforms has emerged as a technological niche overcoming challenges related to the loss of sensitivity and selectivity in biological media. Optimal operation of BRNs in microfluidics requires control over reaction-diffusion dominated mass transport, heavily influenced by fluidic parameters. In this work, we study and design an on-chip platform combining a programable unique molecular amplification as BRNs with nanoscale biologically sensitive field-effect transistor (BioFET) arrays, which employs a physical diffusion barrier to gain spatial and temporal control over mass transport. Computational and numerical approaches, such as finite element and finite volume methods, were implemented to solve partial differential equations numerically after domain approximation by numerous finite elements. The focus on geometrical optimizations of fluidics is aimed at mass transport to occur with precise spatial and temporal control toward BioFET-arrays. Adopting a 0.5 pM limit-of-detection (LoD) for biochemical monitoring of BRNs via a single-stranded deoxyribonucleic acid (ssDNA) output, we show that it was possible to compartmentalize the mass transport spatiotemporally without crosstalk, which can be of critical advantage for using biosensor arrays in order to realize simplified multiplexed point-of-care biosensors.Show less >
Show more >Integration of biochemical reaction networks (BRNs) with biosensor platforms has emerged as a technological niche overcoming challenges related to the loss of sensitivity and selectivity in biological media. Optimal operation of BRNs in microfluidics requires control over reaction-diffusion dominated mass transport, heavily influenced by fluidic parameters. In this work, we study and design an on-chip platform combining a programable unique molecular amplification as BRNs with nanoscale biologically sensitive field-effect transistor (BioFET) arrays, which employs a physical diffusion barrier to gain spatial and temporal control over mass transport. Computational and numerical approaches, such as finite element and finite volume methods, were implemented to solve partial differential equations numerically after domain approximation by numerous finite elements. The focus on geometrical optimizations of fluidics is aimed at mass transport to occur with precise spatial and temporal control toward BioFET-arrays. Adopting a 0.5 pM limit-of-detection (LoD) for biochemical monitoring of BRNs via a single-stranded deoxyribonucleic acid (ssDNA) output, we show that it was possible to compartmentalize the mass transport spatiotemporally without crosstalk, which can be of critical advantage for using biosensor arrays in order to realize simplified multiplexed point-of-care biosensors.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Source :
Files
- 042016_1_5.0146585.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Spatiotemporal.fluidics.MAIN.rev.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Spatiotemporal.fluidics.MAIN.rev.pdf
- Open access
- Access the document