3D interlock design 100% PVDF piezoelectric ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
3D interlock design 100% PVDF piezoelectric to improve energy harvesting
Author(s) :
Talbourdet, Anaëlle [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Rault, François [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Lemort, Guillaume [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Cochrane, Cédric [Auteur]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Génie et Matériaux Textiles [GEMTEX]
Devaux, Eric [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Campagne, Christine [Auteur]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Rault, François [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Lemort, Guillaume [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Cochrane, Cédric [Auteur]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Génie et Matériaux Textiles [GEMTEX]
Devaux, Eric [Auteur]
École nationale supérieure des arts et industries textiles [ENSAIT]
Génie et Matériaux Textiles [GEMTEX]
Campagne, Christine [Auteur]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Génie et Matériaux Textiles [GEMTEX]
Journal title :
Smart Materials and Structures
Abbreviated title :
Smart Mater. Struct.
Volume number :
27
Publication date :
2018-05-29
ISSN :
0964-1726
English keyword(s) :
piezoelectric effect
PVDF
3D woven
energy harvesting
beta-phase
textile structure
PVDF
3D woven
energy harvesting
beta-phase
textile structure
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Piezoelectric textile structures based on 100% poly(vinylidene fluoride) (PVDF) were developed and characterised. Multifilaments of 246 tex were produced by melt spinning. The mechanical stretching during the process ...
Show more >Piezoelectric textile structures based on 100% poly(vinylidene fluoride) (PVDF) were developed and characterised. Multifilaments of 246 tex were produced by melt spinning. The mechanical stretching during the process provides PVDF fibres with a piezoelectric β-phase of up to 97% has been measured by FTIR experiments. Several studies have been carried out on piezoelectric PVDF-based flexible structures (films or textiles), the aim of the study being the investigation of the differences between 2D and 3D woven fabrics from 100% optimised (by optimising piezoelectric crystalline phase) piezoelectric PVDF multifilament yarns. The textile structures were poled after the weaving process, and a maximum output voltage of 2.3 V was observed on 3D woven under compression by DMA tests. Energy harvesting is optimised in a 3D interlock thanks to the stresses of the multifilaments in the thickness. The addition of a resistor makes it possible to measure energy of 10.5 μJ.m−2 during 10 cycles of stress in compression of 5 s each.Show less >
Show more >Piezoelectric textile structures based on 100% poly(vinylidene fluoride) (PVDF) were developed and characterised. Multifilaments of 246 tex were produced by melt spinning. The mechanical stretching during the process provides PVDF fibres with a piezoelectric β-phase of up to 97% has been measured by FTIR experiments. Several studies have been carried out on piezoelectric PVDF-based flexible structures (films or textiles), the aim of the study being the investigation of the differences between 2D and 3D woven fabrics from 100% optimised (by optimising piezoelectric crystalline phase) piezoelectric PVDF multifilament yarns. The textile structures were poled after the weaving process, and a maximum output voltage of 2.3 V was observed on 3D woven under compression by DMA tests. Energy harvesting is optimised in a 3D interlock thanks to the stresses of the multifilaments in the thickness. The addition of a resistor makes it possible to measure energy of 10.5 μJ.m−2 during 10 cycles of stress in compression of 5 s each.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Submission date :
2023-06-20T02:35:15Z
2024-03-13T08:47:44Z
2024-03-13T08:47:44Z