Development of a Textile Coding Tag for ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Development of a Textile Coding Tag for the Traceability in Textile Supply Chain by Using Pattern Recognition and Robust Deep Learning
Auteur(s) :
Wang, Kaichen [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Soochow University
École nationale supérieure des arts et industries textiles [ENSAIT]
Kumar, Vijay [Auteur]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Zeng, Xianyi [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Koehl, Ludovic [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Tao, Xuyuan [Auteur]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Chen, Yan [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Soochow University
École nationale supérieure des arts et industries textiles [ENSAIT]
Kumar, Vijay [Auteur]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Zeng, Xianyi [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Koehl, Ludovic [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT)
Tao, Xuyuan [Auteur]
Génie et Matériaux Textiles [GEMTEX]
École nationale supérieure des arts et industries textiles [ENSAIT]
Chen, Yan [Auteur]
Titre de la revue :
International Journal of Computational Intelligence Systems
Nom court de la revue :
Int. J. Comput. Intell. Syst.
Numéro :
12
Pagination :
713-722
Date de publication :
2019-09-14
ISSN :
1875-6891
Mot(s)-clé(s) en anglais :
Traceability
Textile tags
Coded yarn recognition
Deep learning
Transfer learning
Convolutional neural network
Textile tags
Coded yarn recognition
Deep learning
Transfer learning
Convolutional neural network
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
The traceability is of paramount importance and considered as a prerequisite for businesses for long-term functioning in today's global supply chain. The implementation of traceability can create visibility by the systematic ...
Lire la suite >The traceability is of paramount importance and considered as a prerequisite for businesses for long-term functioning in today's global supply chain. The implementation of traceability can create visibility by the systematic recall of information related to all processes and logistics movement. The traceability coding tag consists of unique features for identification, which links the product with traceability information, plays an important part in the traceability system. In this paper, we describe an innovative technique of product component-based traceability which demonstrates that product's inherent features—extracted using deep learning—can be used as a traceability signature. This has been demonstrated on textile fabrics, where Faster region-based convolutional neural network (Faster R-CNN) has been introduced with transfer learning to provide a robust end-to-end solution for coded yarn recognition. The experimental results show that the deep learning-based algorithm is promising in coded yarn recognition, which indicates the feasibility for industrial application.Lire moins >
Lire la suite >The traceability is of paramount importance and considered as a prerequisite for businesses for long-term functioning in today's global supply chain. The implementation of traceability can create visibility by the systematic recall of information related to all processes and logistics movement. The traceability coding tag consists of unique features for identification, which links the product with traceability information, plays an important part in the traceability system. In this paper, we describe an innovative technique of product component-based traceability which demonstrates that product's inherent features—extracted using deep learning—can be used as a traceability signature. This has been demonstrated on textile fabrics, where Faster region-based convolutional neural network (Faster R-CNN) has been introduced with transfer learning to provide a robust end-to-end solution for coded yarn recognition. The experimental results show that the deep learning-based algorithm is promising in coded yarn recognition, which indicates the feasibility for industrial application.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Date de dépôt :
2023-06-20T11:14:18Z
2024-02-27T14:10:03Z
2024-02-27T14:10:03Z
Fichiers
- 125912323.pdf
- Non spécifié
- Accès libre
- Accéder au document