Modeling color fading ozonation of ...
Type de document :
Article dans une revue scientifique
DOI :
URL permanente :
Titre :
Modeling color fading ozonation of reactive-dyed cotton using the Extreme Learning Machine, Support Vector Regression and Random Forest
Auteur(s) :
He, Zhenglei [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Tran, Kim-Phuc [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Zeng, Xianyi [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Thomassey, Sebastien [Auteur]
Yi, changhai [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Tran, Kim-Phuc [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Zeng, Xianyi [Auteur]
Génie et Matériaux Textiles [GEMTEX]
Thomassey, Sebastien [Auteur]
Yi, changhai [Auteur]
Titre de la revue :
Textile Research Journal
Nom court de la revue :
Text. Res. J.
Date de publication :
2019-11-09
ISSN :
0040-5175
Mot(s)-clé(s) en anglais :
modeling
color fading
ozonation
Extreme Learning Machine
Support Vector Regression
Random Forest
color fading
ozonation
Extreme Learning Machine
Support Vector Regression
Random Forest
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé :
Textile products with faded effect achieved via ozonation are increasingly popular recently. In this study, the effect of ozonation in terms of pH, temperature, water pickup , time and applied colors on the color fading ...
Lire la suite >Textile products with faded effect achieved via ozonation are increasingly popular recently. In this study, the effect of ozonation in terms of pH, temperature, water pickup , time and applied colors on the color fading performance of reactive-dyed cotton are modeled using Extreme Learning Machine (ELM), Support Vector Regression (SVR) and Random Forest Regression (RF) respectively. It is found that RF and SVR perform better than ELM in this issue, but SVR is more recommended to be sued in the real application due to its balance predicting performance and less training time.Lire moins >
Lire la suite >Textile products with faded effect achieved via ozonation are increasingly popular recently. In this study, the effect of ozonation in terms of pH, temperature, water pickup , time and applied colors on the color fading performance of reactive-dyed cotton are modeled using Extreme Learning Machine (ELM), Support Vector Regression (SVR) and Random Forest Regression (RF) respectively. It is found that RF and SVR perform better than ELM in this issue, but SVR is more recommended to be sued in the real application due to its balance predicting performance and less training time.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Date de dépôt :
2023-06-20T11:17:37Z
2024-02-21T14:31:24Z
2024-02-21T14:31:24Z