Achieving ultrahigh fatigue resistance in ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing
Auteur(s) :
Dan, Chengyi [Auteur]
Shanghai Jiao Tong University [Shanghai]
Cui, Yuchi [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wu, Yi [Auteur]
Shanghai Jiao Tong University [Shanghai]
Chen, Zhe [Auteur]
Shanghai Jiao Tong University [Shanghai]
Liu, Hui [Auteur]
Department of Mechanical Engineering [Hong Kong]
Ji, Gang [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Xiao, Yakai [Auteur]
Shanghai Jiao Tong University [Shanghai]
Chen, Han [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wang, Mingliang [Auteur]
Shanghai Jiao Tong University [Shanghai]
Liu, Jun [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wang, Lei [Auteur]
Shanghai Jiao Tong University [Shanghai]
Li, Yang [Auteur]
Shanghai Jiao Tong University [Shanghai]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Zhou, Ying [Auteur]
Shanghai Jiao Tong University [Shanghai]
Ma, Siming [Auteur]
Shanghai Jiao Tong University [Shanghai]
Shi, Qiwei [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wang, Haowei [Auteur]
Shanghai Jiao Tong University [Shanghai]
Lu, Jian [Auteur]
Department of Mechanical Engineering [Hong Kong]
City University of Hong Kong [Hong Kong] [CUHK]
Shanghai Jiao Tong University [Shanghai]
Cui, Yuchi [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wu, Yi [Auteur]
Shanghai Jiao Tong University [Shanghai]
Chen, Zhe [Auteur]
Shanghai Jiao Tong University [Shanghai]
Liu, Hui [Auteur]
Department of Mechanical Engineering [Hong Kong]
Ji, Gang [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Xiao, Yakai [Auteur]
Shanghai Jiao Tong University [Shanghai]
Chen, Han [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wang, Mingliang [Auteur]
Shanghai Jiao Tong University [Shanghai]
Liu, Jun [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wang, Lei [Auteur]
Shanghai Jiao Tong University [Shanghai]
Li, Yang [Auteur]
Shanghai Jiao Tong University [Shanghai]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Zhou, Ying [Auteur]
Shanghai Jiao Tong University [Shanghai]
Ma, Siming [Auteur]
Shanghai Jiao Tong University [Shanghai]
Shi, Qiwei [Auteur]
Shanghai Jiao Tong University [Shanghai]
Wang, Haowei [Auteur]
Shanghai Jiao Tong University [Shanghai]
Lu, Jian [Auteur]
Department of Mechanical Engineering [Hong Kong]
City University of Hong Kong [Hong Kong] [CUHK]
Titre de la revue :
Nature Materials
Nom court de la revue :
Nat. Mater.
Éditeur :
Springer Science and Business Media LLC
Date de publication :
2023-08-17
ISSN :
1476-1122
Discipline(s) HAL :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Chimie/Matériaux
Chimie/Matériaux
Résumé en anglais : [en]
Since the first discovery of the fatigue phenomenon in the late 1830s, efforts to fight against fatigue failure have continued. Here we report a fatigue resistance phenomenon in nano-TiB2-decorated AlSi10Mg enabled by ...
Lire la suite >Since the first discovery of the fatigue phenomenon in the late 1830s, efforts to fight against fatigue failure have continued. Here we report a fatigue resistance phenomenon in nano-TiB2-decorated AlSi10Mg enabled by additive manufacturing. This fatigue resistance mechanism benefits from the three-dimensional dual-phase cellular nanostructure, which acts as a strong volumetric nanocage to prevent localized damage accumulation, thus inhibiting fatigue crack initiation. The intrinsic fatigue strength limit of nano-TiB2-decorated AlSi10Mg was proven to be close to its tensile strength through the in situ fatigue tests of a defect-free microsample. To demonstrate the practical applicability of this mechanism, printed bulk nano-TiB2-decorated AlSi10Mg achieved fatigue resistance more than double those of other additive manufacturing Al alloys and surpassed those of high-strength wrought Al alloys. This strategy of additive-manufacturing-assisted nanostructure engineering can be extended to the development of other dual-phase fatigue-resistant metals.Lire moins >
Lire la suite >Since the first discovery of the fatigue phenomenon in the late 1830s, efforts to fight against fatigue failure have continued. Here we report a fatigue resistance phenomenon in nano-TiB2-decorated AlSi10Mg enabled by additive manufacturing. This fatigue resistance mechanism benefits from the three-dimensional dual-phase cellular nanostructure, which acts as a strong volumetric nanocage to prevent localized damage accumulation, thus inhibiting fatigue crack initiation. The intrinsic fatigue strength limit of nano-TiB2-decorated AlSi10Mg was proven to be close to its tensile strength through the in situ fatigue tests of a defect-free microsample. To demonstrate the practical applicability of this mechanism, printed bulk nano-TiB2-decorated AlSi10Mg achieved fatigue resistance more than double those of other additive manufacturing Al alloys and surpassed those of high-strength wrought Al alloys. This strategy of additive-manufacturing-assisted nanostructure engineering can be extended to the development of other dual-phase fatigue-resistant metals.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2023-08-23T09:06:18Z
2023-08-30T13:15:42Z
2023-08-30T13:15:42Z