Porous silicon-nanowire-based electrode ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Porous silicon-nanowire-based electrode for the photoelectrocatalytic production of hydrogen
Author(s) :
Wang, Jingxian [Auteur]
Solar fuels, hydrogen and catalysis [SolHyCat]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Keller, Caroline [Auteur]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Département de l'électricité et de l'hydrogène pour les transports [DEHT]
Olli, Paul [Auteur]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Gentile, Pascal [Auteur]
PHotonique, ELectronique et Ingénierie QuantiqueS [PHELIQS]
Pouget, Stéphanie [Auteur]
Modélisation et Exploration des Matériaux [MEM]
Okuno, Hanako [Auteur]
Modélisation et Exploration des Matériaux [MEM]
Boutghatin, Mohamed [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pennec (Admin), Yan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Johnson, Hannah [Auteur]
Toyota Motor Europe
Reita, Valérie [Auteur]
Optique & Microscopies [NEEL - POM]
Morozan, Adina [Auteur]
Solar fuels, hydrogen and catalysis [SolHyCat]
Chenevier, Pascale [Auteur correspondant]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Nguyen, Duc [Auteur]
University of Science and Technology of Hanoi [USTH]
Solar fuels, hydrogen and catalysis [SolHyCat]
Artero, Vincent [Auteur]
Solar fuels, hydrogen and catalysis [SolHyCat]
Solar fuels, hydrogen and catalysis [SolHyCat]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Keller, Caroline [Auteur]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Département de l'électricité et de l'hydrogène pour les transports [DEHT]
Olli, Paul [Auteur]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Gentile, Pascal [Auteur]
PHotonique, ELectronique et Ingénierie QuantiqueS [PHELIQS]
Pouget, Stéphanie [Auteur]
Modélisation et Exploration des Matériaux [MEM]
Okuno, Hanako [Auteur]
Modélisation et Exploration des Matériaux [MEM]
Boutghatin, Mohamed [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pennec (Admin), Yan [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Johnson, Hannah [Auteur]
Toyota Motor Europe
Reita, Valérie [Auteur]
Optique & Microscopies [NEEL - POM]
Morozan, Adina [Auteur]
Solar fuels, hydrogen and catalysis [SolHyCat]
Chenevier, Pascale [Auteur correspondant]
Synthèse, Structure et Propriétés de Matériaux Fonctionnels [STEP]
Nguyen, Duc [Auteur]
University of Science and Technology of Hanoi [USTH]
Solar fuels, hydrogen and catalysis [SolHyCat]
Artero, Vincent [Auteur]
Solar fuels, hydrogen and catalysis [SolHyCat]
Journal title :
Sustainable Energy & Fuels
Pages :
4864-4876
Publisher :
Royal Society of Chemistry
Publication date :
2023-08-23
ISSN :
2398-4902
HAL domain(s) :
Chimie/Matériaux
English abstract : [en]
Photoelectrochemical water splitting is a sustainable and environmentally friendly way to produce green hydrogen, for which the practical fabrication of low-cost photoelectrodes remains a challenge. Here we report a porous ...
Show more >Photoelectrochemical water splitting is a sustainable and environmentally friendly way to produce green hydrogen, for which the practical fabrication of low-cost photoelectrodes remains a challenge. Here we report a porous photocathode assembly based on silicon nanowires (SiNW) as a light absorber and non-precious molybdenum sulfide (MoSx) as a hydrogen-evolution catalyst. Tuning the SiNW diameter is key to select the light absorption wavelength range of the system. We demonstrate a facile and robust route to synthesize SiNWs with a controlled diameter from 13 to 48 nm directly on a porous conductive support. The high quality and homogeneity of the SiNWs grown by this method also allowed drawing unprecedented conclusions on the growth process, hinting towards a silylene path. Photocathodes baring SiNWs covered with MoSx perform photoelectrocatalytic production of hydrogen for several hours with a faradaic yield over 98%.Building a porous photocathode for solar hydrogen production with earth-abundant materials: silicon nanowires to harvest light, molybdenum sulfide to turn protons into hydrogen.Show less >
Show more >Photoelectrochemical water splitting is a sustainable and environmentally friendly way to produce green hydrogen, for which the practical fabrication of low-cost photoelectrodes remains a challenge. Here we report a porous photocathode assembly based on silicon nanowires (SiNW) as a light absorber and non-precious molybdenum sulfide (MoSx) as a hydrogen-evolution catalyst. Tuning the SiNW diameter is key to select the light absorption wavelength range of the system. We demonstrate a facile and robust route to synthesize SiNWs with a controlled diameter from 13 to 48 nm directly on a porous conductive support. The high quality and homogeneity of the SiNWs grown by this method also allowed drawing unprecedented conclusions on the growth process, hinting towards a silylene path. Photocathodes baring SiNWs covered with MoSx perform photoelectrocatalytic production of hydrogen for several hours with a faradaic yield over 98%.Building a porous photocathode for solar hydrogen production with earth-abundant materials: silicon nanowires to harvest light, molybdenum sulfide to turn protons into hydrogen.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- d3se00408b
- Open access
- Access the document
- document
- Open access
- Access the document
- Wang_2023_SustainableEnergy%26Fuel_d3se00408b.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Wang_2023_SustainableEnergy%26Fuel_d3se00408b.pdf
- Open access
- Access the document