Revitalizing Inert Materials: Grafting ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Revitalizing Inert Materials: Grafting Self‐Oscillating, Stimuli‐Responsive Organometallic Polymers for Pulsating Systems
Auteur(s) :
Pirkin‐Benameur, Johanne [Auteur]
Bouad, Vincent [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lefèbvre, Flora [Auteur]
Bouyer, Denis [Auteur]
Sénéchal‐David, Katell [Auteur]
Rebilly, Jean‐Noël [Auteur]
Banse, Frédéric [Auteur]
Fournier, David [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Quemener, Damien [Auteur]
Bouad, Vincent [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lefèbvre, Flora [Auteur]
Bouyer, Denis [Auteur]
Sénéchal‐David, Katell [Auteur]
Rebilly, Jean‐Noël [Auteur]
Banse, Frédéric [Auteur]
Fournier, David [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Quemener, Damien [Auteur]
Titre de la revue :
Advanced Materials Interfaces
Nom court de la revue :
Adv Materials Inter
Éditeur :
Wiley
Date de publication :
2023-08-04
ISSN :
2196-7350
Mot(s)-clé(s) en anglais :
Belousov-Zhabotinsky oscillator
membrane
self-oscillating polymer
stimuli-responsive polymer
membrane
self-oscillating polymer
stimuli-responsive polymer
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Génie des procédés
Chimie
Chimie/Matériaux
Chimie/Polymères
Chimie
Chimie/Matériaux
Chimie/Polymères
Résumé en anglais : [en]
A major challenge in materials science is dynamically adjusting material properties using sensors and control systems. This contribution develops a new approach using a self‐oscillating copolymer to autonomously change ...
Lire la suite >A major challenge in materials science is dynamically adjusting material properties using sensors and control systems. This contribution develops a new approach using a self‐oscillating copolymer to autonomously change material surface properties in response to environmental changes. A redox‐sensitive terpolymer of N‐isopropylacrylamide (NIPAM), dimethylacrylamide (DMAc), and an iron‐based comonomer ([(phen)2(phen‐5‐yl‐acrylamide)FeII](PF6)2) is synthesized via Reversible Addition‐Fragmentation Chain Transfer (RAFT) polymerization, catalyzing an oscillating redox reaction (Belousov‐Zhabotinsky, BZ). The terpolymer oscillates from soluble to insoluble around 35 °C based on the iron's oxidation state. A catechol unit is incorporated to enhance versatility, enabling grafting onto different surfaces. Optimal BZ reagent concentrations are explored for maximum oscillation amplitude and frequency. By selecting a working temperature between redox transition points, the copolymer's oscillation from coil to globular conformation is observed due to redox oscillations. The self‐oscillating copolymer is grafted onto an ultrafiltration membrane, where conformational changes cause variations in pore size, leading to rapid negative flux peaks that disrupt the flux and reduce membrane fouling during protein filtration. This study highlights self‐oscillating polymers' ability to impart dynamic properties to inert materials, paving the way for smart materials with self‐regulating properties to adapt to changing conditions.Lire moins >
Lire la suite >A major challenge in materials science is dynamically adjusting material properties using sensors and control systems. This contribution develops a new approach using a self‐oscillating copolymer to autonomously change material surface properties in response to environmental changes. A redox‐sensitive terpolymer of N‐isopropylacrylamide (NIPAM), dimethylacrylamide (DMAc), and an iron‐based comonomer ([(phen)2(phen‐5‐yl‐acrylamide)FeII](PF6)2) is synthesized via Reversible Addition‐Fragmentation Chain Transfer (RAFT) polymerization, catalyzing an oscillating redox reaction (Belousov‐Zhabotinsky, BZ). The terpolymer oscillates from soluble to insoluble around 35 °C based on the iron's oxidation state. A catechol unit is incorporated to enhance versatility, enabling grafting onto different surfaces. Optimal BZ reagent concentrations are explored for maximum oscillation amplitude and frequency. By selecting a working temperature between redox transition points, the copolymer's oscillation from coil to globular conformation is observed due to redox oscillations. The self‐oscillating copolymer is grafted onto an ultrafiltration membrane, where conformational changes cause variations in pore size, leading to rapid negative flux peaks that disrupt the flux and reduce membrane fouling during protein filtration. This study highlights self‐oscillating polymers' ability to impart dynamic properties to inert materials, paving the way for smart materials with self‐regulating properties to adapt to changing conditions.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2023-09-04T14:09:27Z
2023-09-05T09:50:06Z
2023-09-05T09:50:06Z
Fichiers
- Revitalizing Inert Materials- Grafting Self‐Oscillating, Stimuli‐Responsive Organometallic Polymers for Pulsating Systems.pdf
- Version éditeur
- Accès libre
- Accéder au document