Revitalizing Inert Materials: Grafting ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Revitalizing Inert Materials: Grafting Self‐Oscillating, Stimuli‐Responsive Organometallic Polymers for Pulsating Systems
Author(s) :
Pirkin‐Benameur, Johanne [Auteur]
Bouad, Vincent [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lefèbvre, Flora [Auteur]
Bouyer, Denis [Auteur]
Sénéchal‐David, Katell [Auteur]
Rebilly, Jean‐Noël [Auteur]
Banse, Frédéric [Auteur]
Fournier, David [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Quemener, Damien [Auteur]
Bouad, Vincent [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lefèbvre, Flora [Auteur]
Bouyer, Denis [Auteur]
Sénéchal‐David, Katell [Auteur]
Rebilly, Jean‐Noël [Auteur]
Banse, Frédéric [Auteur]
Fournier, David [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Quemener, Damien [Auteur]
Journal title :
Advanced Materials Interfaces
Abbreviated title :
Adv Materials Inter
Publisher :
Wiley
Publication date :
2023-08-04
ISSN :
2196-7350
English keyword(s) :
Belousov-Zhabotinsky oscillator
membrane
self-oscillating polymer
stimuli-responsive polymer
membrane
self-oscillating polymer
stimuli-responsive polymer
HAL domain(s) :
Sciences de l'ingénieur [physics]/Génie des procédés
Chimie
Chimie/Matériaux
Chimie/Polymères
Chimie
Chimie/Matériaux
Chimie/Polymères
English abstract : [en]
A major challenge in materials science is dynamically adjusting material properties using sensors and control systems. This contribution develops a new approach using a self‐oscillating copolymer to autonomously change ...
Show more >A major challenge in materials science is dynamically adjusting material properties using sensors and control systems. This contribution develops a new approach using a self‐oscillating copolymer to autonomously change material surface properties in response to environmental changes. A redox‐sensitive terpolymer of N‐isopropylacrylamide (NIPAM), dimethylacrylamide (DMAc), and an iron‐based comonomer ([(phen)2(phen‐5‐yl‐acrylamide)FeII](PF6)2) is synthesized via Reversible Addition‐Fragmentation Chain Transfer (RAFT) polymerization, catalyzing an oscillating redox reaction (Belousov‐Zhabotinsky, BZ). The terpolymer oscillates from soluble to insoluble around 35 °C based on the iron's oxidation state. A catechol unit is incorporated to enhance versatility, enabling grafting onto different surfaces. Optimal BZ reagent concentrations are explored for maximum oscillation amplitude and frequency. By selecting a working temperature between redox transition points, the copolymer's oscillation from coil to globular conformation is observed due to redox oscillations. The self‐oscillating copolymer is grafted onto an ultrafiltration membrane, where conformational changes cause variations in pore size, leading to rapid negative flux peaks that disrupt the flux and reduce membrane fouling during protein filtration. This study highlights self‐oscillating polymers' ability to impart dynamic properties to inert materials, paving the way for smart materials with self‐regulating properties to adapt to changing conditions.Show less >
Show more >A major challenge in materials science is dynamically adjusting material properties using sensors and control systems. This contribution develops a new approach using a self‐oscillating copolymer to autonomously change material surface properties in response to environmental changes. A redox‐sensitive terpolymer of N‐isopropylacrylamide (NIPAM), dimethylacrylamide (DMAc), and an iron‐based comonomer ([(phen)2(phen‐5‐yl‐acrylamide)FeII](PF6)2) is synthesized via Reversible Addition‐Fragmentation Chain Transfer (RAFT) polymerization, catalyzing an oscillating redox reaction (Belousov‐Zhabotinsky, BZ). The terpolymer oscillates from soluble to insoluble around 35 °C based on the iron's oxidation state. A catechol unit is incorporated to enhance versatility, enabling grafting onto different surfaces. Optimal BZ reagent concentrations are explored for maximum oscillation amplitude and frequency. By selecting a working temperature between redox transition points, the copolymer's oscillation from coil to globular conformation is observed due to redox oscillations. The self‐oscillating copolymer is grafted onto an ultrafiltration membrane, where conformational changes cause variations in pore size, leading to rapid negative flux peaks that disrupt the flux and reduce membrane fouling during protein filtration. This study highlights self‐oscillating polymers' ability to impart dynamic properties to inert materials, paving the way for smart materials with self‐regulating properties to adapt to changing conditions.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2023-09-04T14:09:27Z
2023-09-05T09:50:06Z
2023-09-05T09:50:06Z
Files
- Revitalizing Inert Materials- Grafting Self‐Oscillating, Stimuli‐Responsive Organometallic Polymers for Pulsating Systems.pdf
- Version éditeur
- Open access
- Access the document