Lignification and Advances in Lignin Imaging ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Lignification and Advances in Lignin Imaging in Plant Cell Walls
Auteur(s) :
Simon, Clemence [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Lion, Cedric [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Biot, Christophe [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Gierlinger, Notburga [Auteur]
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
Hawkins, Simon [Auteur]
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Lion, Cedric [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Biot, Christophe [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Gierlinger, Notburga [Auteur]
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
Hawkins, Simon [Auteur]

Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
Titre de la revue :
Annual Plant Reviews Online
Numéro :
1
Pagination :
909-940
Éditeur :
Wiley
Date de publication :
2018-11-16
ISBN :
9781119312994
ISSN :
2639-3832
Mot(s)-clé(s) en anglais :
plant cell wall
lignin
imaging
fluorescence
Raman spectroscopy
bioorthogonal chemistry
ligno-cellulose biomass
lignin
imaging
fluorescence
Raman spectroscopy
bioorthogonal chemistry
ligno-cellulose biomass
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Chimie/Chimie théorique et/ou physique
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
Lignin is the second most abundant plant biopolymer after cellulose on the planet. This phenolic polymer is a major constituent of the cell wall in certain specialised plant tissues where it plays a vital role in many ...
Lire la suite >Lignin is the second most abundant plant biopolymer after cellulose on the planet. This phenolic polymer is a major constituent of the cell wall in certain specialised plant tissues where it plays a vital role in many aspects of plant growth. Both the amount and the chemical composition of lignin in cell walls have important effects on the characteristics of plant biomass thereby impacting strongly on the quality of a wide range of economically important products derived from plants. A better understanding of how the lignin polymer contributes to the development of the plant interacts with the environment during the carbon cycle and influences the characteristics of lignocellulose biomass depends upon the availability of appropriate analytical tools permitting a complete characterisation of lignin composition. While several chemical and physical techniques are able to provide both qualitative and quantitative analyses of the chemical composition of extracted cell wall material and/or lignin, they are generally unable to provide detailed spatial information at the tissue/cell‐wall level. Recently, the development and application of vibrational spectroscopy and bioorthogonal chemical approaches to lignin imaging are allowing us to obtain a better understanding of the heterogeneity and dynamics of lignin structure in situ. In this article, we discuss lignification and the different techniques that are available to the plant biologist interested in characterising lignin structure with a focus on new imaging techniques.Lire moins >
Lire la suite >Lignin is the second most abundant plant biopolymer after cellulose on the planet. This phenolic polymer is a major constituent of the cell wall in certain specialised plant tissues where it plays a vital role in many aspects of plant growth. Both the amount and the chemical composition of lignin in cell walls have important effects on the characteristics of plant biomass thereby impacting strongly on the quality of a wide range of economically important products derived from plants. A better understanding of how the lignin polymer contributes to the development of the plant interacts with the environment during the carbon cycle and influences the characteristics of lignocellulose biomass depends upon the availability of appropriate analytical tools permitting a complete characterisation of lignin composition. While several chemical and physical techniques are able to provide both qualitative and quantitative analyses of the chemical composition of extracted cell wall material and/or lignin, they are generally unable to provide detailed spatial information at the tissue/cell‐wall level. Recently, the development and application of vibrational spectroscopy and bioorthogonal chemical approaches to lignin imaging are allowing us to obtain a better understanding of the heterogeneity and dynamics of lignin structure in situ. In this article, we discuss lignification and the different techniques that are available to the plant biologist interested in characterising lignin structure with a focus on new imaging techniques.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Autre(s) projet(s) ou source(s) de financement :
The Austrian Science Fund (FWF) (START Project Y-728-B16)
Établissement(s) :
Université de Lille
CNRS
CNRS
Équipe(s) de recherche :
Chemical Glycobiology
Date de dépôt :
2023-10-09T09:21:40Z
2023-10-13T07:57:10Z
2023-10-13T07:57:10Z
Fichiers
- P23.37 Lignification and lignin imaging AnnRev 2018 - copie.pdf
- Version éditeur
- Accès restreint
- Accéder au document