Pure climb creep mechanism drives flow in ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Pure climb creep mechanism drives flow in Earth's lower mantle
Author(s) :
Boioli, Francesca [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Université de Lille
LEM, UMR 104 CNRS-ONERA, Université Paris Saclay (COmUE) [Châtillon]
Carrez, Philippe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Devincre, Benoit [Auteur]
Gouriet, Karine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hirel, Pierre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Kraych, Antoine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
LEM, UMR 104 CNRS-ONERA, Université Paris Saclay (COmUE) [Châtillon]
Ritterbex, Sebastian [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ehime University [Matsuyama, Japon]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Université de Lille
LEM, UMR 104 CNRS-ONERA, Université Paris Saclay (COmUE) [Châtillon]
Carrez, Philippe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Devincre, Benoit [Auteur]
Gouriet, Karine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hirel, Pierre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Kraych, Antoine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
LEM, UMR 104 CNRS-ONERA, Université Paris Saclay (COmUE) [Châtillon]
Ritterbex, Sebastian [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ehime University [Matsuyama, Japon]
Journal title :
Science Advances
Volume number :
3
Pages :
e1601958
Publication date :
2017-11-17
HAL domain(s) :
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance ...
Show more >At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The spe-cificities of pure climb creep well match the seismic anisotropy observed of Earth's lower mantle.Show less >
Show more >At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The spe-cificities of pure climb creep well match the seismic anisotropy observed of Earth's lower mantle.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Research team(s) :
Plasticité
Submission date :
2019-05-16T17:19:52Z
2024-04-16T12:40:22Z
2024-04-16T12:40:22Z
Files
- Boioli-et-al(2017)PureClimbCreep.pdf
- Non spécifié
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 3.0 United States