Simulations of atomic deuterium exposure ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Simulations of atomic deuterium exposure in self-damaged tungsten
Author(s) :
Hodille, E.A. [Auteur]
Institut de Recherche sur la Fusion par confinement Magnétique [IRFM]
Založnik, A. [Auteur]
Jozef Stefan Institute [Ljubljana] [IJS]
Markelj, S. [Auteur]
Jozef Stefan Institute [Ljubljana] [IJS]
Schwarz-Selinger, T. [Auteur]
Max-Planck-Institut für Plasmaphysik [Garching] [IPP]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bisson, R. [Auteur]
Physique des interactions ioniques et moléculaires [PIIM]
Grisolia, C. [Auteur]
Association EURATOM-CEA [CEA/DSM/DRFC]
Institut de Recherche sur la Fusion par confinement Magnétique [IRFM]
Institut de Recherche sur la Fusion par confinement Magnétique [IRFM]
Založnik, A. [Auteur]
Jozef Stefan Institute [Ljubljana] [IJS]
Markelj, S. [Auteur]
Jozef Stefan Institute [Ljubljana] [IJS]
Schwarz-Selinger, T. [Auteur]
Max-Planck-Institut für Plasmaphysik [Garching] [IPP]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bisson, R. [Auteur]
Physique des interactions ioniques et moléculaires [PIIM]
Grisolia, C. [Auteur]
Association EURATOM-CEA [CEA/DSM/DRFC]
Institut de Recherche sur la Fusion par confinement Magnétique [IRFM]
Journal title :
Nuclear Fusion
Volume number :
57
Pages :
56002
Publication date :
2017-03-14
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
International Atomic Energy Agency Nuclear Fusion
Paper
Simulations of atomic deuterium exposure in self-damaged tungsten
E.A. Hodille1, A. Založnik2, S. Markelj2, T. Schwarz-Selinger3, C.S. Becquart4, R. Bisson5 and ...
Show more >International Atomic Energy Agency Nuclear Fusion Paper Simulations of atomic deuterium exposure in self-damaged tungsten E.A. Hodille1, A. Založnik2, S. Markelj2, T. Schwarz-Selinger3, C.S. Becquart4, R. Bisson5 and C. Grisolia1 Published 14 March 2017 • © 2017 EURATOM Nuclear Fusion, Volume 57, Number 5 Citation E.A. Hodille et al 2017 Nucl. Fusion 57 056002 DOI 10.1088/1741-4326/aa5aa5 Article metrics 1269 Total downloads 4646 total citations on Dimensions. Permissions Get permission to re-use this article Share this article Article and author information Abstract Simulations of deuterium (D) atom exposure in self-damaged polycrystalline tungsten at 500 K and 600 K are performed using an evolution of the MHIMS (migration of hydrogen isotopes in materials) code in which a model to describe the interaction of D with the surface is implemented. The surface-energy barriers for both temperatures are determined analytically with a steady-state analysis. The desorption energy per D atom from the surface is 0.69 ± 0.02 eV at 500 K and 0.87 ± 0.03 eV at 600 K. These values are in good agreement with ab initio calculations as well as experimental determination of desorption energies. The absorption energy (from the surface to the bulk) is 1.33 ± 0.04 eV at 500 K, 1.55 ± 0.02 eV at 600 K when assuming that the resurfacing energy (from the bulk to the surface) is 0.2 eV. Thermal-desorption spectrometry data after D atom exposure at 500 K and isothermal desorption at 600 K after D atom exposure at 600 K can be reproduced quantitatively with three bulk-detrapping energies, namely 1.65 ± 0.01 eV, 1.85 ± 0.03 eV and 2.06 ± 0.04 eV, in addition to the intrinsic detrapping energies known for undamaged tungsten (0.85 eV and 1.00 eV). Thanks to analyses of the amount of traps during annealing at different temperatures and ab initio calculations, the 1.65 eV detrapping energy is attributed to jogged dislocations and the 1.85 eV detrapping energy is attributed to dislocation loops. Finally, the 2.06 eV detrapping energy is attributed to D trapping in cavities based on literature reporting observations on the growth of cavities, even though this could also be understood as D desorbing from the C-D bond in the case of hydrocarbon contamination in the experimental sample.Show less >
Show more >International Atomic Energy Agency Nuclear Fusion Paper Simulations of atomic deuterium exposure in self-damaged tungsten E.A. Hodille1, A. Založnik2, S. Markelj2, T. Schwarz-Selinger3, C.S. Becquart4, R. Bisson5 and C. Grisolia1 Published 14 March 2017 • © 2017 EURATOM Nuclear Fusion, Volume 57, Number 5 Citation E.A. Hodille et al 2017 Nucl. Fusion 57 056002 DOI 10.1088/1741-4326/aa5aa5 Article metrics 1269 Total downloads 4646 total citations on Dimensions. Permissions Get permission to re-use this article Share this article Article and author information Abstract Simulations of deuterium (D) atom exposure in self-damaged polycrystalline tungsten at 500 K and 600 K are performed using an evolution of the MHIMS (migration of hydrogen isotopes in materials) code in which a model to describe the interaction of D with the surface is implemented. The surface-energy barriers for both temperatures are determined analytically with a steady-state analysis. The desorption energy per D atom from the surface is 0.69 ± 0.02 eV at 500 K and 0.87 ± 0.03 eV at 600 K. These values are in good agreement with ab initio calculations as well as experimental determination of desorption energies. The absorption energy (from the surface to the bulk) is 1.33 ± 0.04 eV at 500 K, 1.55 ± 0.02 eV at 600 K when assuming that the resurfacing energy (from the bulk to the surface) is 0.2 eV. Thermal-desorption spectrometry data after D atom exposure at 500 K and isothermal desorption at 600 K after D atom exposure at 600 K can be reproduced quantitatively with three bulk-detrapping energies, namely 1.65 ± 0.01 eV, 1.85 ± 0.03 eV and 2.06 ± 0.04 eV, in addition to the intrinsic detrapping energies known for undamaged tungsten (0.85 eV and 1.00 eV). Thanks to analyses of the amount of traps during annealing at different temperatures and ab initio calculations, the 1.65 eV detrapping energy is attributed to jogged dislocations and the 1.85 eV detrapping energy is attributed to dislocation loops. Finally, the 2.06 eV detrapping energy is attributed to D trapping in cavities based on literature reporting observations on the growth of cavities, even though this could also be understood as D desorbing from the C-D bond in the case of hydrocarbon contamination in the experimental sample.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Research team(s) :
Métallurgie Physique et Génie des Matériaux
Submission date :
2019-05-16T17:19:55Z
2024-08-28T13:38:58Z
2024-08-28T13:38:58Z