Measurement of kinetics and thermodynamics ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Measurement of kinetics and thermodynamics of the thermal degradation for flame retarded materials: Application to EVA/ATH/NC
Auteur(s) :
Girardin, Bertrand [Auteur]
Ecole Nationale Supérieure de Chimie de Lille [ENSCL]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Fontaine, Gaelle [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Försth, Michael [Auteur]
Luleå University of Technology = Luleå Tekniska Universitet [LUT]
SP Technical Research Institute of Sweden
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ecole Nationale Supérieure de Chimie de Lille [ENSCL]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Fontaine, Gaelle [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Försth, Michael [Auteur]
Luleå University of Technology = Luleå Tekniska Universitet [LUT]
SP Technical Research Institute of Sweden
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
Journal of Analytical and Applied Pyrolysis
Numéro :
124
Pagination :
130-148
Date de publication :
2017-03
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Matériaux
Sciences de l'ingénieur [physics]/Génie des procédés
Chimie/Matériaux
Chimie/Polymères
Sciences de l'ingénieur [physics]/Génie des procédés
Chimie/Matériaux
Chimie/Polymères
Résumé en anglais : [en]
The modelling of the behavior of a material exposed to fire is very complex and needs the coupling of fluid dynamics, combustion, heat and mass transfer, kinetics and so forth. A growing amount of studies and numerical ...
Lire la suite >The modelling of the behavior of a material exposed to fire is very complex and needs the coupling of fluid dynamics, combustion, heat and mass transfer, kinetics and so forth. A growing amount of studies and numerical models are reported in this field since the last decade. The aim of these models is to predict the fire behavior of wood, charring or non-charring polymers and even intumescent materials. However, these studies are seldom applied to formulated materials and especially flame retarded materials. In this study, an ethylene-vinyl acetate copolymer was formulated with a flame retardant (aluminum tri-hydroxide) and a synergist (nanoclays). A systematic approach for the characterization of the thermo-physical properties of the material as well as of its optical properties and the heat capacity of the decomposition gases is proposed and applied in this study. It is shown that it is possible to evaluate the input data required for pyrolysis modelling, even for multi decomposition steps materials. It is also shown that the diffusion of the gases inside the material had to be considered on the opposite of the classical assumption found in other studies. Indeed, using low mass diffusivity was the sole way to predict in the same time the temperature distribution and the mass loss rate of the material in a gasification experiments.Lire moins >
Lire la suite >The modelling of the behavior of a material exposed to fire is very complex and needs the coupling of fluid dynamics, combustion, heat and mass transfer, kinetics and so forth. A growing amount of studies and numerical models are reported in this field since the last decade. The aim of these models is to predict the fire behavior of wood, charring or non-charring polymers and even intumescent materials. However, these studies are seldom applied to formulated materials and especially flame retarded materials. In this study, an ethylene-vinyl acetate copolymer was formulated with a flame retardant (aluminum tri-hydroxide) and a synergist (nanoclays). A systematic approach for the characterization of the thermo-physical properties of the material as well as of its optical properties and the heat capacity of the decomposition gases is proposed and applied in this study. It is shown that it is possible to evaluate the input data required for pyrolysis modelling, even for multi decomposition steps materials. It is also shown that the diffusion of the gases inside the material had to be considered on the opposite of the classical assumption found in other studies. Indeed, using low mass diffusivity was the sole way to predict in the same time the temperature distribution and the mass loss rate of the material in a gasification experiments.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2019-05-16T17:20:03Z
2024-04-02T12:29:04Z
2024-04-02T12:29:04Z