Structural and vibrational characterization ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Structural and vibrational characterization of sugar arabinitol structures employing micro-Raman spectra and DFT calculations
Author(s) :
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Carpentier, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Derollez, Patrick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Brandán, Silvia Antonia [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Carpentier, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Derollez, Patrick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Brandán, Silvia Antonia [Auteur]
Journal title :
Journal of Molecular Structure
Volume number :
1138
Pages :
118-128
Publication date :
2017-06-15
ISSN :
0022-2860
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
English abstract : [en]
In this work, three monomeric forms of arabinitol, usually named arabitol, and their dimeric species have been structural and vibrationally studied by using the micro-Raman spectra in the solid phase accomplished with ...
Show more >In this work, three monomeric forms of arabinitol, usually named arabitol, and their dimeric species have been structural and vibrationally studied by using the micro-Raman spectra in the solid phase accomplished with theoretical calculations based on the theory of the functional of the density (DFT). The hybrid B3LYP method was used for all the calculations together with the 6-31G* and 6-311++g** basis sets. Two different L structures with minima energies were predicted in accordance to the two polymorphic structures revealed by recent X-ray diffraction experiments. The studies by natural bond orbital (NBO) calculations reveals high stabilities of the L form as compared with the D one but the topological properties by using the atoms in molecules (AIM) suggest a higher stability of the D form due to a strong H bond interactions. The scaled mechanical force fields (SQMFF) procedure was used to perform the complete vibrational assignments for the monomeric forms and their dimer. On the other hand, the similarity in the gap values computed for the three forms of arabitol with those observed for sucrose, trehalose, maltose and lactose in gas phase at the same level of theory could partially explain the sweetening property of this alcohol. In addition, the influences of the size of the basis set on some properties were evidenced.Show less >
Show more >In this work, three monomeric forms of arabinitol, usually named arabitol, and their dimeric species have been structural and vibrationally studied by using the micro-Raman spectra in the solid phase accomplished with theoretical calculations based on the theory of the functional of the density (DFT). The hybrid B3LYP method was used for all the calculations together with the 6-31G* and 6-311++g** basis sets. Two different L structures with minima energies were predicted in accordance to the two polymorphic structures revealed by recent X-ray diffraction experiments. The studies by natural bond orbital (NBO) calculations reveals high stabilities of the L form as compared with the D one but the topological properties by using the atoms in molecules (AIM) suggest a higher stability of the D form due to a strong H bond interactions. The scaled mechanical force fields (SQMFF) procedure was used to perform the complete vibrational assignments for the monomeric forms and their dimer. On the other hand, the similarity in the gap values computed for the three forms of arabitol with those observed for sucrose, trehalose, maltose and lactose in gas phase at the same level of theory could partially explain the sweetening property of this alcohol. In addition, the influences of the size of the basis set on some properties were evidenced.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Research team(s) :
Matériaux Moléculaires et Thérapeutiques
Submission date :
2019-05-16T17:20:13Z
2024-07-10T08:10:19Z
2024-07-10T08:10:19Z