Dehydration-driven stress transfer triggers ...
Type de document :
Article dans une revue scientifique
DOI :
URL permanente :
Titre :
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
Auteur(s) :
Ferrand, Thomas [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Incel, Sarah [Auteur]
Institut des Sciences de la Terre de Paris [iSTeP]
Deldicque, Damien [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Labrousse, Loïc [Auteur]
Lithosphère, structure et dynamique [LSD]
Gasc, Julien [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Renner, Jörg [Auteur]
Institut für Geologie, Mineralogie und Geophysik
Wang, Yanbin [Auteur]
Center for Advanced Radiation Sources [University of Chicago] [CARS]
Green Ii, Harry W. [Auteur]
University of California [Riverside] [UC Riverside]
Schubnel, Alexandre [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Laboratoire de géologie de l'ENS [LGENS]
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Incel, Sarah [Auteur]
Institut des Sciences de la Terre de Paris [iSTeP]
Deldicque, Damien [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Labrousse, Loïc [Auteur]
Lithosphère, structure et dynamique [LSD]
Gasc, Julien [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Renner, Jörg [Auteur]
Institut für Geologie, Mineralogie und Geophysik
Wang, Yanbin [Auteur]
Center for Advanced Radiation Sources [University of Chicago] [CARS]
Green Ii, Harry W. [Auteur]
University of California [Riverside] [UC Riverside]
Schubnel, Alexandre [Auteur]
Laboratoire de géologie de l'ENS [LGENS]
Titre de la revue :
Nature communications
Numéro :
8
Pagination :
15247
Date de publication :
2017-05-15
Discipline(s) HAL :
Planète et Univers [physics]/Astrophysique [astro-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Résumé en anglais : [en]
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation ...
Lire la suite >Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.Lire moins >
Lire la suite >Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2019-05-16T17:20:47Z
2024-04-23T14:27:34Z
2024-04-23T14:27:34Z
Fichiers
- ncomms15247.pdf
- Non spécifié
- Accès libre
- Accéder au document