Paris vs. Murchison: Impact of hydrothermal ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Paris vs. Murchison: Impact of hydrothermal alteration on organic matter in CM chondrites
Auteur(s) :
Vinogradoff, V. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Le Guillou, Corentin [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bernard, Sylvain [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Binet, L. [Auteur]
Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL [ENSCP]
Institut de Recherche de Chimie Paris [IRCP]
Cartigny, P. [Auteur]
Institut de Physique du Globe de Paris [IPGP (UMR_7154)]
Brearley, Adrian J. [Auteur]
Department of Earth and Planetary Sciences [Albuquerque] [EPS]
Remusat, Laurent [Auteur]
Muséum national d'Histoire naturelle [MNHN]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Le Guillou, Corentin [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bernard, Sylvain [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Binet, L. [Auteur]
Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL [ENSCP]
Institut de Recherche de Chimie Paris [IRCP]
Cartigny, P. [Auteur]
Institut de Physique du Globe de Paris [IPGP (UMR_7154)]
Brearley, Adrian J. [Auteur]
Department of Earth and Planetary Sciences [Albuquerque] [EPS]
Remusat, Laurent [Auteur]
Muséum national d'Histoire naturelle [MNHN]
Titre de la revue :
Geochimica et Cosmochimica Acta
Numéro :
212
Pagination :
234-252
Date de publication :
2017-09-12
Discipline(s) HAL :
Planète et Univers [physics]/Astrophysique [astro-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Résumé en anglais : [en]
Unravelling the origin of organic compounds that were accreted into asteroids requires better constraining the impact of asteroidal hydrothermal alteration on their isotopic signatures, molecular structures, and spatial ...
Lire la suite >Unravelling the origin of organic compounds that were accreted into asteroids requires better constraining the impact of asteroidal hydrothermal alteration on their isotopic signatures, molecular structures, and spatial distribution. Here, we conducted a multi-scale/multi-technique comparative study of the organic matter (OM) from two CM chondrites (that originate from the same parent body or from identical parent bodies that accreted the same mixture of precursors) and underwent a different degree of hydrothermal alteration: Paris (a weakly altered CM chondrite – CM 2.8) and Murchison (a more altered one – CM 2.5). The Paris insoluble organic matter (IOM) shows a higher aliphatic/aromatic carbon ratio, a higher radical abundance and a lower oxygen content than the Murchison IOM. Analysis of the OM in situ shows that two texturally distinct populations of organic compounds are present within the Paris matrix: sub-micrometric individual OM particles and diffuse OM finely distributed within phyllosilicates and amorphous silicates. These results indicate that hydrothermal alteration on the CM parent body induced aromatization and oxidation of the IOM, as well as a decrease in radical and nitrogen contents. Some of these observations were also reported by studies of variably altered fragment of Tagish Lake (C2), although the hydrothermal alteration of the OM in Tagish Lake was apparently much more severe. Finally, comparison with data available in the literature suggests that the parent bodies of other chondrite petrologic groups could have accreted a mixture of organic precursors different from that accreted by the parent body of CMs.Lire moins >
Lire la suite >Unravelling the origin of organic compounds that were accreted into asteroids requires better constraining the impact of asteroidal hydrothermal alteration on their isotopic signatures, molecular structures, and spatial distribution. Here, we conducted a multi-scale/multi-technique comparative study of the organic matter (OM) from two CM chondrites (that originate from the same parent body or from identical parent bodies that accreted the same mixture of precursors) and underwent a different degree of hydrothermal alteration: Paris (a weakly altered CM chondrite – CM 2.8) and Murchison (a more altered one – CM 2.5). The Paris insoluble organic matter (IOM) shows a higher aliphatic/aromatic carbon ratio, a higher radical abundance and a lower oxygen content than the Murchison IOM. Analysis of the OM in situ shows that two texturally distinct populations of organic compounds are present within the Paris matrix: sub-micrometric individual OM particles and diffuse OM finely distributed within phyllosilicates and amorphous silicates. These results indicate that hydrothermal alteration on the CM parent body induced aromatization and oxidation of the IOM, as well as a decrease in radical and nitrogen contents. Some of these observations were also reported by studies of variably altered fragment of Tagish Lake (C2), although the hydrothermal alteration of the OM in Tagish Lake was apparently much more severe. Finally, comparison with data available in the literature suggests that the parent bodies of other chondrite petrologic groups could have accreted a mixture of organic precursors different from that accreted by the parent body of CMs.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2019-05-16T17:20:50Z
2024-05-21T09:07:46Z
2024-05-21T09:07:46Z