Multivalued Memory via Freezing of Super-Hard ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Multivalued Memory via Freezing of Super-Hard Magnetic Domains in a Quasi 2D-Magnet.
Author(s) :
Mentre, Olivier [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Leclercq, Bastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Arevalo Lopez, Angel [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Pautrat, Alain [Auteur]
Laboratoire de cristallographie et sciences des matériaux [CRISMAT]
Petit, Sylvain [Auteur]
CEA- Saclay [CEA]
Minaud, Claire [Auteur]
Daviero-Minaud, Sylvie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hovhannisyan, R. A. [Auteur]
Stolyarov, V. S. [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Leclercq, Bastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Arevalo Lopez, Angel [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Pautrat, Alain [Auteur]
Laboratoire de cristallographie et sciences des matériaux [CRISMAT]
Petit, Sylvain [Auteur]
CEA- Saclay [CEA]
Minaud, Claire [Auteur]
Daviero-Minaud, Sylvie [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hovhannisyan, R. A. [Auteur]
Stolyarov, V. S. [Auteur]
Journal title :
Small Methods
Volume number :
7
Pages :
e2300491
Publication date :
2023-07-25
ISSN :
2366-9608
HAL domain(s) :
Chimie/Matériaux
English abstract : [en]
The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to ...
Show more >The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single-molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra-low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D-Ising compound BaFe2(PO4)2 overcomes these limitations. The combination of giant magneto-crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under Tf ≈15 K. This results in a transition from a soft to a super-hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.Show less >
Show more >The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single-molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra-low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D-Ising compound BaFe2(PO4)2 overcomes these limitations. The combination of giant magneto-crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under Tf ≈15 K. This results in a transition from a soft to a super-hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Submission date :
2023-11-14T01:02:53Z
2023-11-25T21:02:52Z
2024-04-23T12:07:23Z
2023-11-25T21:02:52Z
2024-04-23T12:07:23Z
Files
- document
- Open access
- Access the document