Identification of patient subtypes based ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Identification of patient subtypes based on protein expression for prediction of heart failure after myocardial infarction.
Author(s) :
Heyse, Wilfried [Auteur]
Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement - U 1167 [RID-AGE]
Laboratoire Paul Painlevé - UMR 8524
Vandewalle, Vincent [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Marot, Guillemette [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Amouyel, Philippe [Auteur]
Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) - U1167
Bauters, Christophe [Auteur]
Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) - U1167
Pinet, Florence [Auteur]
Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) - U1167
Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement - U 1167 [RID-AGE]
Laboratoire Paul Painlevé - UMR 8524
Vandewalle, Vincent [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Marot, Guillemette [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Amouyel, Philippe [Auteur]
Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) - U1167
Bauters, Christophe [Auteur]
Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) - U1167
Pinet, Florence [Auteur]
Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) - U1167
Journal title :
Iscience
Abbreviated title :
Iscience
Volume number :
26
Pages :
106171
Publication date :
2023-03-17
ISSN :
2589-0042
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
This study investigates the ability of high-throughput aptamer-based platform to identify circulating biomarkers able to predict occurrence of heart failure (HF), in blood samples collected during hospitalization of patients ...
Show more >This study investigates the ability of high-throughput aptamer-based platform to identify circulating biomarkers able to predict occurrence of heart failure (HF), in blood samples collected during hospitalization of patients suffering from a first myocardial infarction (MI). REVE-1 (derivation) and REVE-2 (validation) cohorts included respectively 254 and 238 patients, followed up respectively 9 · 2 ± 4 · 8 and 7 · 6 ± 3 · 0 years. A blood sample collected during hospitalization was used for quantifying 4,668 proteins. Fifty proteins were significantly associated with long-term occurrence of HF with all-cause death as the competing event. k-means, an unsupervised clustering method, identified two groups of patients based on expression levels of the 50 proteins. Group 2 was significantly associated with a higher risk of HF in both cohorts. These results showed that a subset of 50 selected proteins quantified during hospitalization of MI patients is able to stratify and predict the long-term occurrence of HF.Show less >
Show more >This study investigates the ability of high-throughput aptamer-based platform to identify circulating biomarkers able to predict occurrence of heart failure (HF), in blood samples collected during hospitalization of patients suffering from a first myocardial infarction (MI). REVE-1 (derivation) and REVE-2 (validation) cohorts included respectively 254 and 238 patients, followed up respectively 9 · 2 ± 4 · 8 and 7 · 6 ± 3 · 0 years. A blood sample collected during hospitalization was used for quantifying 4,668 proteins. Fifty proteins were significantly associated with long-term occurrence of HF with all-cause death as the competing event. k-means, an unsupervised clustering method, identified two groups of patients based on expression levels of the 50 proteins. Group 2 was significantly associated with a higher risk of HF in both cohorts. These results showed that a subset of 50 selected proteins quantified during hospitalization of MI patients is able to stratify and predict the long-term occurrence of HF.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CHU Lille
CHU Lille
Collections :
Submission date :
2023-11-15T02:20:43Z
2024-03-04T18:34:06Z
2024-03-04T18:34:06Z
Files
- PIIS2589004223002481.pdf
- Version éditeur
- Open access
- Access the document