Typical oxygen isotope profile of altered ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Typical oxygen isotope profile of altered oceanic crust recorded in continental intraplate basalts
Author(s) :
Chen, Huan [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Xia, Qun-Ke [Auteur]
Deloule, Etienne [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Université de Lorraine [UL]
Ingrin, Jannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Xia, Qun-Ke [Auteur]
Deloule, Etienne [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Université de Lorraine [UL]
Ingrin, Jannick [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Journal of Earth Science
Volume number :
28
Pages :
578-587
Publication date :
2017-07-22
HAL domain(s) :
Planète et Univers [physics]/Astrophysique [astro-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
English abstract : [en]
Recycled oceanic crust (ROC) has long been suggested to be a candidate introducing enriched geochemical signatures into the mantle source of intraplate basalts. The different parts of oceanic crust are characterized by ...
Show more >Recycled oceanic crust (ROC) has long been suggested to be a candidate introducing enriched geochemical signatures into the mantle source of intraplate basalts. The different parts of oceanic crust are characterized by variable oxygen isotope compositions (δ18O=3.7‰ to 13.6‰). To trace the signatures of ROC in the mantle source of intraplate basalts, we measured the δ18O values of clinopyroxene (cpx) phenocrysts in the Cenozoic basalts from the Shuangliao volcanic field, NE China using secondary ion mass spectrometer (SIMS). The δ18O values of the Shuangliao cpx phenocrysts in four basalts ranging from 4.10‰ to 6.73‰ (with average values 5.93‰±0.36‰, 5.95‰±0.30‰, 5.58‰±0.66‰, and 4.55‰± 0.38‰, respectively) apparently exceed those of normal mantle-derived cpx (5.6‰±0.2‰) and fall in the typical oxygen isotope range of altered oceanic crust. The δ18O values display the negative correlations with the Eu, Sr anomalies of whole rocks and erupted ages, demonstrating that (1) the ROC is the main enriched component in the mantle source of the Shuangliao basalts and (2) the contributions of ROC varied with time. The basalt with the lowest δ18O value is characterized by a significant K positive anomaly, highest H2O/Ce and Ba/Th ratios, suggesting that the mantle source of basalts with low δ18O can also include a water-rich sediment component that may be the trigger for partial melting. Considering the continuous subduction of the Pacific slab, the temporal heterogeneity of the source components is likely to be caused by the Pacific slab subduction.Show less >
Show more >Recycled oceanic crust (ROC) has long been suggested to be a candidate introducing enriched geochemical signatures into the mantle source of intraplate basalts. The different parts of oceanic crust are characterized by variable oxygen isotope compositions (δ18O=3.7‰ to 13.6‰). To trace the signatures of ROC in the mantle source of intraplate basalts, we measured the δ18O values of clinopyroxene (cpx) phenocrysts in the Cenozoic basalts from the Shuangliao volcanic field, NE China using secondary ion mass spectrometer (SIMS). The δ18O values of the Shuangliao cpx phenocrysts in four basalts ranging from 4.10‰ to 6.73‰ (with average values 5.93‰±0.36‰, 5.95‰±0.30‰, 5.58‰±0.66‰, and 4.55‰± 0.38‰, respectively) apparently exceed those of normal mantle-derived cpx (5.6‰±0.2‰) and fall in the typical oxygen isotope range of altered oceanic crust. The δ18O values display the negative correlations with the Eu, Sr anomalies of whole rocks and erupted ages, demonstrating that (1) the ROC is the main enriched component in the mantle source of the Shuangliao basalts and (2) the contributions of ROC varied with time. The basalt with the lowest δ18O value is characterized by a significant K positive anomaly, highest H2O/Ce and Ba/Th ratios, suggesting that the mantle source of basalts with low δ18O can also include a water-rich sediment component that may be the trigger for partial melting. Considering the continuous subduction of the Pacific slab, the temporal heterogeneity of the source components is likely to be caused by the Pacific slab subduction.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Research team(s) :
Matériaux Terrestres et Planétaires
Submission date :
2019-05-16T17:21:35Z
2024-07-10T08:39:31Z
2024-07-10T08:39:31Z