Implementation of an ontological reasoning ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Implementation of an ontological reasoning to support the guideline-based management of primary breast cancer patients in the DESIREE project.
Auteur(s) :
Bouaud, Jacques [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Pelayo, Sylvie [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Lamy, Jean-Baptiste [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Prebet, Coralie [Auteur]
CHU Tenon [AP-HP]
Ngo, Charlotte [Auteur]
Hôpital Européen Georges Pompidou [APHP] [HEGP]
Teixeira, Luis [Auteur]
Hopital Saint-Louis [AP-HP] [AP-HP]
Guézennec, Gilles [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Séroussi, Brigitte [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Pelayo, Sylvie [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Lamy, Jean-Baptiste [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Prebet, Coralie [Auteur]
CHU Tenon [AP-HP]
Ngo, Charlotte [Auteur]
Hôpital Européen Georges Pompidou [APHP] [HEGP]
Teixeira, Luis [Auteur]
Hopital Saint-Louis [AP-HP] [AP-HP]
Guézennec, Gilles [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Séroussi, Brigitte [Auteur]
Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé [LIMICS]
Titre de la revue :
Artificial Intelligence in Medicine
Nom court de la revue :
Artif Intell Med
Numéro :
108
Pagination :
101922
Date de publication :
2020-09-26
ISSN :
1873-2860
Mot(s)-clé(s) en anglais :
Clinical decision support systems
Ontology
Clinical practice guidelines
Breast cancer
Ontology
Clinical practice guidelines
Breast cancer
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
The DESIREE project has developed a platform offering several complementary therapeutic decision support modules to improve the quality of care for breast cancer patients. All modules are operating consistently with a ...
Lire la suite >The DESIREE project has developed a platform offering several complementary therapeutic decision support modules to improve the quality of care for breast cancer patients. All modules are operating consistently with a common breast cancer knowledge model (BCKM) following the generic entity-attribute-value model. The BCKM is formalized as an ontology including both the data model to represent clinical patient information and the termino-ontological model to represent the application domain concepts. This ontological model is used to describe data semantics and to allow for reasoning at different levels of abstraction. We present the guideline-based decision support module (GL-DSS). Three breast cancer clinical practice guidelines have been formalized as decision rules including evidence levels, conformance levels, and two types of dependency, “refinement” and “complement”, used to build complete care plans from the reconciliation of atomic recommendations. The system has been assessed on 138 decisions previously made without the system and re-played with the system after a washout period on simulated tumor boards (TBs) in three pilot sites. When TB clinicians changed their decision after using the GL-DSS, it was for a better decision than the decision made without the system in 75 % of the cases.Lire moins >
Lire la suite >The DESIREE project has developed a platform offering several complementary therapeutic decision support modules to improve the quality of care for breast cancer patients. All modules are operating consistently with a common breast cancer knowledge model (BCKM) following the generic entity-attribute-value model. The BCKM is formalized as an ontology including both the data model to represent clinical patient information and the termino-ontological model to represent the application domain concepts. This ontological model is used to describe data semantics and to allow for reasoning at different levels of abstraction. We present the guideline-based decision support module (GL-DSS). Three breast cancer clinical practice guidelines have been formalized as decision rules including evidence levels, conformance levels, and two types of dependency, “refinement” and “complement”, used to build complete care plans from the reconciliation of atomic recommendations. The system has been assessed on 138 decisions previously made without the system and re-played with the system after a washout period on simulated tumor boards (TBs) in three pilot sites. When TB clinicians changed their decision after using the GL-DSS, it was for a better decision than the decision made without the system in 75 % of the cases.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CHU Lille
CHU Lille
Date de dépôt :
2023-11-15T08:05:39Z
2024-01-10T11:53:13Z
2024-01-10T11:53:13Z
Fichiers
- document
- Accès libre
- Accéder au document