PAC-Bayesian bounds for learning LTI-ss ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
PAC-Bayesian bounds for learning LTI-ss systems with input from empirical loss
Auteur(s) :
Eringis, Deividas [Auteur]
Department of Electronic Systems - Aalborg University
Leth, John [Auteur]
Department of Electronic Systems - Aalborg University
Tan, Zheng-Hua [Auteur]
Department of Computer Science [Aalborg]
Wisniewski, Rafael [Auteur]
Department of Electronic Systems - Aalborg University
Petreczky, Mihaly [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Department of Electronic Systems - Aalborg University
Leth, John [Auteur]
Department of Electronic Systems - Aalborg University
Tan, Zheng-Hua [Auteur]
Department of Computer Science [Aalborg]
Wisniewski, Rafael [Auteur]
Department of Electronic Systems - Aalborg University
Petreczky, Mihaly [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
Workshop Frontiers4LCD ICML 2023
Ville :
Honolulu
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2023-07
Date de publication :
2023-07
Mot(s)-clé(s) en anglais :
Machine Learning (stat.ML)
Machine Learning (cs.LG)
FOS: Computer and information sciences
Machine Learning (cs.LG)
FOS: Computer and information sciences
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
In this paper we derive a Probably Approxilmately Correct(PAC)-Bayesian error bound for linear time-invariant (LTI) stochastic dynamical systems with inputs. Such bounds are widespread in machine learning, and they are ...
Lire la suite >In this paper we derive a Probably Approxilmately Correct(PAC)-Bayesian error bound for linear time-invariant (LTI) stochastic dynamical systems with inputs. Such bounds are widespread in machine learning, and they are useful for characterizing the predictive power of models learned from finitely many data points. In particular, with the bound derived in this paper relates future average prediction errors with the prediction error generated by the model on the data used for learning. In turn, this allows us to provide finite-sample error bounds for a wide class of learning/system identification algorithms. Furthermore, as LTI systems are a sub-class of recurrent neural networks (RNNs), these error bounds could be a first step towards PAC-Bayesian bounds for RNNs.Lire moins >
Lire la suite >In this paper we derive a Probably Approxilmately Correct(PAC)-Bayesian error bound for linear time-invariant (LTI) stochastic dynamical systems with inputs. Such bounds are widespread in machine learning, and they are useful for characterizing the predictive power of models learned from finitely many data points. In particular, with the bound derived in this paper relates future average prediction errors with the prediction error generated by the model on the data used for learning. In turn, this allows us to provide finite-sample error bounds for a wide class of learning/system identification algorithms. Furthermore, as LTI systems are a sub-class of recurrent neural networks (RNNs), these error bounds could be a first step towards PAC-Bayesian bounds for RNNs.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
arXiv admin note: text overlap with arXiv:2212.14838
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 2303.16816%281%29.pdf
- Accès libre
- Accéder au document
- 2303.16816
- Accès libre
- Accéder au document