Data supporting "Deformation mechanisms, ...
Type de document :
Données de recherche: Jeu de données
DOI :
URL permanente :
Titre :
Data supporting "Deformation mechanisms, microstructures, and seismic anisotropy of wadsleyite in the Earth's transition zone" by Ledoux et al.
Auteur(s) :
Ledoux, Estelle [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Saki, Morvarid [Auteur]
Gay, Jeffrey-Phillip [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Krug, Matthias [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Castelnau, Olivier [Auteur]
Zhou, Wen-Yi [Auteur]
Zhang, Jin [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bykov, Maxim [Auteur]
Bykova, Elena [Auteur]
Aprilis, Georgios [Auteur]
Svitlyk, Volodymir [Auteur]
Garbarino, Gaston [Auteur]
Sanchez-Valle, Carmen [Auteur]
Thomas, Christine [Auteur]
Speziale, Sergio [Auteur]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Saki, Morvarid [Auteur]
Gay, Jeffrey-Phillip [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Krug, Matthias [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Castelnau, Olivier [Auteur]
Zhou, Wen-Yi [Auteur]
Zhang, Jin [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bykov, Maxim [Auteur]
Bykova, Elena [Auteur]
Aprilis, Georgios [Auteur]
Svitlyk, Volodymir [Auteur]
Garbarino, Gaston [Auteur]
Sanchez-Valle, Carmen [Auteur]
Thomas, Christine [Auteur]
Speziale, Sergio [Auteur]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Date de mise en ligne :
2023-10-22
Entrepôt hébergeur :
Recherche Data Gouv
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Wadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic ...
Lire la suite >Wadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser-heated diamond anvil cell. We rely on multigrain X-ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that 〈111〉{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.Lire moins >
Lire la suite >Wadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser-heated diamond anvil cell. We rely on multigrain X-ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that 〈111〉{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.Lire moins >
Langue :
Anglais
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2023-12-01T08:37:36Z
2023-12-01T14:58:40Z
2023-12-05T10:26:29Z
2024-04-13T10:22:32Z
2023-12-01T14:58:40Z
2023-12-05T10:26:29Z
2024-04-13T10:22:32Z