Detailed experimental performance of two ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Detailed experimental performance of two new pyrimidine-pyrazole derivatives as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond breaking upon adsorption
Author(s) :
Lachhab, H. [Auteur]
University of Mohammed I - Université Mohammed Premier
Benzbiria, N. [Auteur]
Titi, A. [Auteur]
University of Mohammed I - Université Mohammed Premier
Echihi, S. [Auteur]
Université Mohammed V de Rabat [Agdal] [UM5]
Belghiti, M.E. [Auteur]
Karzazi, Y. [Auteur]
University of Mohammed I - Université Mohammed Premier
Zarrouk, A. [Auteur]
Université Mohammed V de Rabat [Agdal] [UM5]
Touzani, R. [Auteur]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Jama, Charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bentiss, F. [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Université Chouaib Doukkali [UCD]
University of Mohammed I - Université Mohammed Premier
Benzbiria, N. [Auteur]
Titi, A. [Auteur]
University of Mohammed I - Université Mohammed Premier
Echihi, S. [Auteur]
Université Mohammed V de Rabat [Agdal] [UM5]
Belghiti, M.E. [Auteur]
Karzazi, Y. [Auteur]
University of Mohammed I - Université Mohammed Premier
Zarrouk, A. [Auteur]
Université Mohammed V de Rabat [Agdal] [UM5]
Touzani, R. [Auteur]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Jama, Charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bentiss, F. [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Université Chouaib Doukkali [UCD]
Journal title :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Abbreviated title :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Pages :
132649
Publisher :
Elsevier BV
Publication date :
2024-01
ISSN :
0927-7757
HAL domain(s) :
Chimie/Matériaux
English abstract : [en]
The corrosion inhibitory potency of two new pyrimidine-pyrazole derivatives, namely N-((3,5-dimethyl-1 H-pyrazol-1-yl) methyl) pyrimidin-2-amine (PPA) and ethyl 5-methyl-1-((pyrimidin-2-yl amino) methyl)− 1 H-pyrazole-3- ...
Show more >The corrosion inhibitory potency of two new pyrimidine-pyrazole derivatives, namely N-((3,5-dimethyl-1 H-pyrazol-1-yl) methyl) pyrimidin-2-amine (PPA) and ethyl 5-methyl-1-((pyrimidin-2-yl amino) methyl)− 1 H-pyrazole-3-carboxylate (PPC), was evaluated by mass loss measurements and electrochemical assays for mild steel (MS) in 1 M HCl at 308 K. In this survey, PPA and PPC products were chosen as inhibitors owing to their environmentally friendly formulation and biodegradability, which aligns with the growing demand for sustainable compounds. Besides, the molecular structure of PPA and PPC was precisely designed to provide higher effectiveness towards corrosion. The derived results revealed that the inhibition activities of both PPA and PPC were enhanced with concentration increase reaching maximal values of 91.15% and 92.39% for PPA and PPC, respectively. Conversely, the mitigation potency dropped by approximately 42.28% (for PPA) and 31.30% (for PPC) as the temperature increased from 308 to 348. PDP plots revealed that PPC and PPA is mixed type inhibitor in 1 M HCl. The adsorption mechanisms of the two inhibitors was examined on micro/nano level with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The derived outcomes indicated high inhibition performance owing to the adsorption of PPA and PPC on MS surface, forming thus a shielding layer that precludes the MS dissolution in the acidic solution. The experimental findings were further confirmed by theoretical descriptors obtained from DFT and Molecular dynamics simulation (MDS) investigations.Show less >
Show more >The corrosion inhibitory potency of two new pyrimidine-pyrazole derivatives, namely N-((3,5-dimethyl-1 H-pyrazol-1-yl) methyl) pyrimidin-2-amine (PPA) and ethyl 5-methyl-1-((pyrimidin-2-yl amino) methyl)− 1 H-pyrazole-3-carboxylate (PPC), was evaluated by mass loss measurements and electrochemical assays for mild steel (MS) in 1 M HCl at 308 K. In this survey, PPA and PPC products were chosen as inhibitors owing to their environmentally friendly formulation and biodegradability, which aligns with the growing demand for sustainable compounds. Besides, the molecular structure of PPA and PPC was precisely designed to provide higher effectiveness towards corrosion. The derived results revealed that the inhibition activities of both PPA and PPC were enhanced with concentration increase reaching maximal values of 91.15% and 92.39% for PPA and PPC, respectively. Conversely, the mitigation potency dropped by approximately 42.28% (for PPA) and 31.30% (for PPC) as the temperature increased from 308 to 348. PDP plots revealed that PPC and PPA is mixed type inhibitor in 1 M HCl. The adsorption mechanisms of the two inhibitors was examined on micro/nano level with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The derived outcomes indicated high inhibition performance owing to the adsorption of PPA and PPC on MS surface, forming thus a shielding layer that precludes the MS dissolution in the acidic solution. The experimental findings were further confirmed by theoretical descriptors obtained from DFT and Molecular dynamics simulation (MDS) investigations.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Procédés de Recyclage et de Fonctionnalisation (PReF)
Submission date :
2023-12-12T14:44:17Z
2023-12-13T09:27:23Z
2024-09-04T09:15:36Z
2023-12-13T09:27:23Z
2024-09-04T09:15:36Z