• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Market Equilibria Preserving ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Title :
Learning Market Equilibria Preserving Statistical Privacy Using Performative Prediction
Author(s) :
Le Cadre, Hélène [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Datar, Mandar [Auteur]
Laboratoire Informatique d'Avignon [LIA]
Guckert, Mathis [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Altman, Eitan [Auteur]
Network Engineering and Operations [NEO]
Laboratoire Informatique d'Avignon [LIA]
English keyword(s) :
Learning Game
Mechanism Design
Performatively Stable Equilibrium
Statistical Privacy
HAL domain(s) :
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
We consider a peer-to-peer electricity market modeled as a network game, where End Users (EUs) minimize their cost by computing their demand and generation while satisfying a set of local and coupling constraints. Their ...
Show more >
We consider a peer-to-peer electricity market modeled as a network game, where End Users (EUs) minimize their cost by computing their demand and generation while satisfying a set of local and coupling constraints. Their nominal demand constitutes sensitive information, that they might want to keep private. We prove that the network game admits a unique Variational Equilibrium, which depends on the private information of all the EUs. A data aggregator (DA) is introduced, which aims to learn the EUs' private information, while remunerating them depending on the quality of the readings they report to the DA. The EUs might have incentives to report biased and noisy readings to preserve their privacy. Relying on performative prediction, we define a decision-dependent game G stoch , to explicitly take into account the shift caused by the EUs' strategic information on their strategies and market equilibria. To compute market equilibria solutions of G stoch , two variants of the Repeated Stochastic Gradient Method (RSGM) and a two-timescale stochastic approximation algorithm are proposed. We prove the convergence of each algorithm. Finally, the algorithms performance is assessed on a numerical example, by comparing the achieved efficiency loss, privacy preservation capabilities, convergence rates, and EUs' utility functions at equilibrium. The results highlight the benefits for the EUs to model performative effects.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • Privacy_Contract%20%2814%29.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017