Pillar[5]arenes-based high-Tg thermosets ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Pillar[5]arenes-based high-Tg thermosets for the capture of volatile organic compounds
Author(s) :
Ritaine, Solenne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ternel, Valentin [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Claverie, Jerome P. [Auteur]
Faculté des sciences [Sherbrooke] [UdeS]
Potier, Jonathan [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ternel, Valentin [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Woisel, Patrice [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Claverie, Jerome P. [Auteur]
Faculté des sciences [Sherbrooke] [UdeS]
Potier, Jonathan [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Journal title :
New Journal of Chemistry
Abbreviated title :
New J. Chem.
Volume number :
47
Pages :
15021-15026
Publisher :
Royal Society of Chemistry (RSC)
Publication date :
2023
HAL domain(s) :
Chimie/Matériaux
English abstract : [en]
Volatile organic compounds (VOCs) continue to be one of the biggest problems for air quality and it is becoming increasingly urgent to find new systems capable of limiting their concentration in the atmosphere. Thanks to ...
Show more >Volatile organic compounds (VOCs) continue to be one of the biggest problems for air quality and it is becoming increasingly urgent to find new systems capable of limiting their concentration in the atmosphere. Thanks to their capacity to recognize halogenated derivatives, Pillar[5]arenes were used to form high performance thermosets able to absorb chlorine and bromide-based VOCs. Initially, poly(2-vinyl-4,4-dimethylazlactone) featuring different chain length were synthetized and modified by ring opening reaction by mono-amino substituted P[5]A. The high-Tg polymers obtained were then crooslinked by isophore diamine to form high performance materials featuring Tg up to 150 °C and storac modulus G′ up to 85 MPa. The ability of P[5]A cavities to capt VOCs was investigated by vapor sorption tests in presence of dichloromethane, 1,2-dibromoethane, dibromochloromethane and 1,1,2,2-tetrachloroethane. The P[5]A-based thermosets shown to be efficient to absord these carcenogenic VOCs and, this efficiency depends on the affinity of cavities for the studied VOCs, proving that these new generation of thermosets seems to be selective towards certain VOCs.Show less >
Show more >Volatile organic compounds (VOCs) continue to be one of the biggest problems for air quality and it is becoming increasingly urgent to find new systems capable of limiting their concentration in the atmosphere. Thanks to their capacity to recognize halogenated derivatives, Pillar[5]arenes were used to form high performance thermosets able to absorb chlorine and bromide-based VOCs. Initially, poly(2-vinyl-4,4-dimethylazlactone) featuring different chain length were synthetized and modified by ring opening reaction by mono-amino substituted P[5]A. The high-Tg polymers obtained were then crooslinked by isophore diamine to form high performance materials featuring Tg up to 150 °C and storac modulus G′ up to 85 MPa. The ability of P[5]A cavities to capt VOCs was investigated by vapor sorption tests in presence of dichloromethane, 1,2-dibromoethane, dibromochloromethane and 1,1,2,2-tetrachloroethane. The P[5]A-based thermosets shown to be efficient to absord these carcenogenic VOCs and, this efficiency depends on the affinity of cavities for the studied VOCs, proving that these new generation of thermosets seems to be selective towards certain VOCs.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2023-12-19T06:47:37Z
2023-12-20T10:49:21Z
2023-12-20T10:49:21Z