Modelling of zirconium growth under ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Modelling of zirconium growth under irradiation and annealing conditions
Author(s) :
Sakaël, Clément [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Ambard, Antoine [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Thuinet, Ludovic [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Legris, Alexandre [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations - UMR 8207 [UMET]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Ambard, Antoine [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Thuinet, Ludovic [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Legris, Alexandre [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Journal title :
International Journal of Plasticity
Abbreviated title :
International Journal of Plasticity
Volume number :
168
Pages :
103699
Publisher :
Elsevier BV
Publication date :
2023-09
ISSN :
0749-6419
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
Modelling zirconium growth under irradiation is a difficult task due to the different types of defects formed which all contribute to the macroscopic deformation. An Object Kinetic Monte Carlo model parameterized using ...
Show more >Modelling zirconium growth under irradiation is a difficult task due to the different types of defects formed which all contribute to the macroscopic deformation. An Object Kinetic Monte Carlo model parameterized using state-of-the-art atomic-scale calculations and experimental data is presented. It is able to reproduce a good macroscopic deformation, the coexistence of all types of defects: 〈a〉 interstitial and vacancy loops, 〈c〉 vacancy loops and the alignments of 〈a〉 loops parallel to the basal plane. A large parametric study is performed in order to understand thoroughly in which conditions these microstructural features can be observed. The model is then applied to study flux effects and the microstructure evolution during annealing. It can be concluded that 〈a〉 loop alignments are phenomena which are very sensitive to the flux. During annealing, the defects can recover in a non-monotonous way and 〈a〉 loops inside the alignments disappear at last, which illustrates their strong stability.Show less >
Show more >Modelling zirconium growth under irradiation is a difficult task due to the different types of defects formed which all contribute to the macroscopic deformation. An Object Kinetic Monte Carlo model parameterized using state-of-the-art atomic-scale calculations and experimental data is presented. It is able to reproduce a good macroscopic deformation, the coexistence of all types of defects: 〈a〉 interstitial and vacancy loops, 〈c〉 vacancy loops and the alignments of 〈a〉 loops parallel to the basal plane. A large parametric study is performed in order to understand thoroughly in which conditions these microstructural features can be observed. The model is then applied to study flux effects and the microstructure evolution during annealing. It can be concluded that 〈a〉 loop alignments are phenomena which are very sensitive to the flux. During annealing, the defects can recover in a non-monotonous way and 〈a〉 loops inside the alignments disappear at last, which illustrates their strong stability.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Métallurgie Physique et Génie des Matériaux
Submission date :
2023-12-20T18:16:34Z
2023-12-22T15:19:24Z
2023-12-22T15:19:24Z