Modelling of zirconium growth under ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Modelling of zirconium growth under irradiation and annealing conditions
Auteur(s) :
Sakaël, Clément [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Ambard, Antoine [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Thuinet, Ludovic [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Legris, Alexandre [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Matériaux et Mécanique des Composants [EDF R&D MMC]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Ambard, Antoine [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Thuinet, Ludovic [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Legris, Alexandre [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Titre de la revue :
International Journal of Plasticity
Nom court de la revue :
International Journal of Plasticity
Numéro :
168
Pagination :
103699
Éditeur :
Elsevier BV
Date de publication :
2023-09
ISSN :
0749-6419
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
Modelling zirconium growth under irradiation is a difficult task due to the different types of defects formed which all contribute to the macroscopic deformation. An Object Kinetic Monte Carlo model parameterized using ...
Lire la suite >Modelling zirconium growth under irradiation is a difficult task due to the different types of defects formed which all contribute to the macroscopic deformation. An Object Kinetic Monte Carlo model parameterized using state-of-the-art atomic-scale calculations and experimental data is presented. It is able to reproduce a good macroscopic deformation, the coexistence of all types of defects: 〈a〉 interstitial and vacancy loops, 〈c〉 vacancy loops and the alignments of 〈a〉 loops parallel to the basal plane. A large parametric study is performed in order to understand thoroughly in which conditions these microstructural features can be observed. The model is then applied to study flux effects and the microstructure evolution during annealing. It can be concluded that 〈a〉 loop alignments are phenomena which are very sensitive to the flux. During annealing, the defects can recover in a non-monotonous way and 〈a〉 loops inside the alignments disappear at last, which illustrates their strong stability.Lire moins >
Lire la suite >Modelling zirconium growth under irradiation is a difficult task due to the different types of defects formed which all contribute to the macroscopic deformation. An Object Kinetic Monte Carlo model parameterized using state-of-the-art atomic-scale calculations and experimental data is presented. It is able to reproduce a good macroscopic deformation, the coexistence of all types of defects: 〈a〉 interstitial and vacancy loops, 〈c〉 vacancy loops and the alignments of 〈a〉 loops parallel to the basal plane. A large parametric study is performed in order to understand thoroughly in which conditions these microstructural features can be observed. The model is then applied to study flux effects and the microstructure evolution during annealing. It can be concluded that 〈a〉 loop alignments are phenomena which are very sensitive to the flux. During annealing, the defects can recover in a non-monotonous way and 〈a〉 loops inside the alignments disappear at last, which illustrates their strong stability.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2023-12-20T18:16:34Z
2023-12-22T15:19:24Z
2023-12-22T15:19:24Z