Ruthenium Oxide Nanoparticles Immobilized ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Ruthenium Oxide Nanoparticles Immobilized on Ti3C2 MXene Nanosheets for Boosting Seawater Electrolysis
Author(s) :
Zhang, Y. [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Zhang, Z. [Auteur]
Yu, Z. [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Wang, Q. [Auteur]
Anhui University [Hefei]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Szunerits, Sabine [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Boukherroub, Rabah [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
NanoBioInterfaces - IEMN [NBI - IEMN]
Zhang, Z. [Auteur]
Yu, Z. [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Wang, Q. [Auteur]
Anhui University [Hefei]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Szunerits, Sabine [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Boukherroub, Rabah [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Journal title :
ACS Appl Mater Interfaces
Volume number :
15
Pages :
58345–58355
Publication date :
2023-12-08
ISSN :
1944-8252
English keyword(s) :
HER
OER
Electrocatalysis
Seawater splitting
RuO2−Ti3C2/NF
OER
Electrocatalysis
Seawater splitting
RuO2−Ti3C2/NF
HAL domain(s) :
Chimie/Chimie inorganique
English abstract : [en]
Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy ...
Show more >Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy cost and harmful chlorine chemistry in seawater limited its development. Herein, an effective catalyst based on a ruthenium nanoparticle–Ti3C2 MXene composite loaded on nickel foam (RuO2–Ti3C2/NF) with an open, fine, and homogeneous nanostructure was devised and synthesized by electrodeposition for high performance and stable overall seawater splitting. To drive a current density of 100 mA cm–2, the RuO2–Ti3C2/NF electrode required a small overpotential of 85 and 351 mV for HER and OER in 1 M KOH with only a slight increase in 1 M KOH seawater (156 and 378 mV for, respectively, HER and OER). An assembled RuO2–Ti3C2/NF-based two-electrode cell required an overpotential of only 1.84 V to acquire 100 mA cm–2 in 1 M KOH seawater and maintained its activity for over 25 h. This low cell voltage effectively prevented chlorine electrochemical evolution without anode protection. These promising results open up new avenues for the effective conversion of abundant seawater resources to hydrogen fuel.Show less >
Show more >Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy cost and harmful chlorine chemistry in seawater limited its development. Herein, an effective catalyst based on a ruthenium nanoparticle–Ti3C2 MXene composite loaded on nickel foam (RuO2–Ti3C2/NF) with an open, fine, and homogeneous nanostructure was devised and synthesized by electrodeposition for high performance and stable overall seawater splitting. To drive a current density of 100 mA cm–2, the RuO2–Ti3C2/NF electrode required a small overpotential of 85 and 351 mV for HER and OER in 1 M KOH with only a slight increase in 1 M KOH seawater (156 and 378 mV for, respectively, HER and OER). An assembled RuO2–Ti3C2/NF-based two-electrode cell required an overpotential of only 1.84 V to acquire 100 mA cm–2 in 1 M KOH seawater and maintained its activity for over 25 h. This low cell voltage effectively prevented chlorine electrochemical evolution without anode protection. These promising results open up new avenues for the effective conversion of abundant seawater resources to hydrogen fuel.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Submission date :
2023-12-28T01:30:49Z
2024-01-12T09:01:10Z
2024-01-12T09:01:10Z