Ruthenium Oxide Nanoparticles Immobilized ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Ruthenium Oxide Nanoparticles Immobilized on Ti3C2 MXene Nanosheets for Boosting Seawater Electrolysis
Auteur(s) :
Zhang, Y. [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Zhang, Z. [Auteur]
Yu, Z. [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Wang, Q. [Auteur]
Anhui University [Hefei]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Szunerits, Sabine [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Boukherroub, Rabah [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
NanoBioInterfaces - IEMN [NBI - IEMN]
Zhang, Z. [Auteur]
Yu, Z. [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Wang, Q. [Auteur]
Anhui University [Hefei]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Szunerits, Sabine [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Boukherroub, Rabah [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Titre de la revue :
ACS Appl Mater Interfaces
Numéro :
15
Pagination :
58345–58355
Date de publication :
2023-12-08
ISSN :
1944-8252
Mot(s)-clé(s) en anglais :
HER
OER
Electrocatalysis
Seawater splitting
RuO2−Ti3C2/NF
OER
Electrocatalysis
Seawater splitting
RuO2−Ti3C2/NF
Discipline(s) HAL :
Chimie/Chimie inorganique
Résumé en anglais : [en]
Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy ...
Lire la suite >Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy cost and harmful chlorine chemistry in seawater limited its development. Herein, an effective catalyst based on a ruthenium nanoparticle–Ti3C2 MXene composite loaded on nickel foam (RuO2–Ti3C2/NF) with an open, fine, and homogeneous nanostructure was devised and synthesized by electrodeposition for high performance and stable overall seawater splitting. To drive a current density of 100 mA cm–2, the RuO2–Ti3C2/NF electrode required a small overpotential of 85 and 351 mV for HER and OER in 1 M KOH with only a slight increase in 1 M KOH seawater (156 and 378 mV for, respectively, HER and OER). An assembled RuO2–Ti3C2/NF-based two-electrode cell required an overpotential of only 1.84 V to acquire 100 mA cm–2 in 1 M KOH seawater and maintained its activity for over 25 h. This low cell voltage effectively prevented chlorine electrochemical evolution without anode protection. These promising results open up new avenues for the effective conversion of abundant seawater resources to hydrogen fuel.Lire moins >
Lire la suite >Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H2), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy cost and harmful chlorine chemistry in seawater limited its development. Herein, an effective catalyst based on a ruthenium nanoparticle–Ti3C2 MXene composite loaded on nickel foam (RuO2–Ti3C2/NF) with an open, fine, and homogeneous nanostructure was devised and synthesized by electrodeposition for high performance and stable overall seawater splitting. To drive a current density of 100 mA cm–2, the RuO2–Ti3C2/NF electrode required a small overpotential of 85 and 351 mV for HER and OER in 1 M KOH with only a slight increase in 1 M KOH seawater (156 and 378 mV for, respectively, HER and OER). An assembled RuO2–Ti3C2/NF-based two-electrode cell required an overpotential of only 1.84 V to acquire 100 mA cm–2 in 1 M KOH seawater and maintained its activity for over 25 h. This low cell voltage effectively prevented chlorine electrochemical evolution without anode protection. These promising results open up new avenues for the effective conversion of abundant seawater resources to hydrogen fuel.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Date de dépôt :
2023-12-28T01:30:49Z
2024-01-12T09:01:10Z
2024-01-12T09:01:10Z