Engineering 3D-Printed Bioresorbable ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study.
Author(s) :
Jordao, A. [Auteur]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Cléret, D. [Auteur]
Dhayer, Mélanie [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Le Rest, M. [Auteur]
Cao, S. [Auteur]
Rech, A. [Auteur]
Azaroual, Nathalie [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Drucbert, Anne-Sophie [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Maboudou, P. [Auteur]
Dekiouk, Salim [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Germain, Nicolas [Auteur]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Payen, J. [Auteur]
Guerreschi, Pierre [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Marchetti, Philippe [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Cléret, D. [Auteur]
Dhayer, Mélanie [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Le Rest, M. [Auteur]
Cao, S. [Auteur]
Rech, A. [Auteur]
Azaroual, Nathalie [Auteur]

Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Drucbert, Anne-Sophie [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Maboudou, P. [Auteur]
Dekiouk, Salim [Auteur]
Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Germain, Nicolas [Auteur]
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Payen, J. [Auteur]
Guerreschi, Pierre [Auteur]

Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Marchetti, Philippe [Auteur]

Cancer Heterogeneity, Plasticity and Resistance to Therapies (CANTHER) - UMR 9020 - UMR 1277
Hétérogénéité, Plasticité et Résistance aux Thérapies des Cancers = Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 [CANTHER]
Journal title :
Biomedicines
Abbreviated title :
biomedicines
Volume number :
11
Pages :
3337
Publisher :
MDPI
Publication date :
2023-12-23
ISSN :
2227-9059
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial ...
Show more >Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.Show less >
Show more >Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CHU Lille
CHU Lille
Collections :
Submission date :
2024-01-03T01:15:35Z
2024-05-22T09:19:59Z
2024-05-22T09:19:59Z
Annexes
- document
- Open access
- -
- Access the document