Simplicity Level Estimate (SLE): A Learned ...
Type de document :
Communication dans un congrès avec actes
Titre :
Simplicity Level Estimate (SLE): A Learned Reference-Less Metric for Sentence Simplification
Auteur(s) :
Cripwell, Liam [Auteur]
Natural Language Processing : representations, inference and semantics [SYNALP]
Legrand, Joël [Auteur]
Natural Language Processing : representations, inference and semantics [SYNALP]
Machine Learning in Information Networks [MAGNET]
Gardent, Claire [Auteur]
Natural Language Processing : representations, inference and semantics [SYNALP]
Natural Language Processing : representations, inference and semantics [SYNALP]
Legrand, Joël [Auteur]
Natural Language Processing : representations, inference and semantics [SYNALP]
Machine Learning in Information Networks [MAGNET]
Gardent, Claire [Auteur]
Natural Language Processing : representations, inference and semantics [SYNALP]
Titre de la manifestation scientifique :
2023 Conference on Empirical Methods in Natural Language Processing
Ville :
Singapore
Pays :
Singapour
Date de début de la manifestation scientifique :
2023-12-06
Titre de l’ouvrage :
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Éditeur :
Association for Computational Linguistics
Discipline(s) HAL :
Informatique [cs]
Résumé en anglais : [en]
Automatic evaluation for sentence simplification remains a challenging problem. Most popular evaluation metrics require multiple high-quality references-something not readily available for simplification-which makes it ...
Lire la suite >Automatic evaluation for sentence simplification remains a challenging problem. Most popular evaluation metrics require multiple high-quality references-something not readily available for simplification-which makes it difficult to test performance on unseen domains. Furthermore, most existing metrics conflate simplicity with correlated attributes such as fluency or meaning preservation. We propose a new learned evaluation metric (SLE) which focuses on simplicity, outperforming almost all existing metrics in terms of correlation with human judgements.Lire moins >
Lire la suite >Automatic evaluation for sentence simplification remains a challenging problem. Most popular evaluation metrics require multiple high-quality references-something not readily available for simplification-which makes it difficult to test performance on unseen domains. Furthermore, most existing metrics conflate simplicity with correlated attributes such as fluency or meaning preservation. We propose a new learned evaluation metric (SLE) which focuses on simplicity, outperforming almost all existing metrics in terms of correlation with human judgements.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 2023.emnlp-main.739.pdf
- Accès libre
- Accéder au document