Machine Learning-Based Classification of ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Machine Learning-Based Classification of Electrical Low Voltage Cable Degradation
Auteur(s) :
Codjo, Egnonnumi Lorraine [Auteur]
13338|||Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP] (VALID)
446870|||University of Mons [Belgium] [UMONS] (VALID)
Bakhshideh Zad, Bashir [Auteur]
Toubeau, Jean-François [Auteur]
Francois, Bruno [Auteur]
13338|||Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP] (VALID)
Vallée, François [Auteur]
13338|||Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP] (VALID)
446870|||University of Mons [Belgium] [UMONS] (VALID)
Bakhshideh Zad, Bashir [Auteur]
Toubeau, Jean-François [Auteur]
Francois, Bruno [Auteur]

13338|||Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP] (VALID)
Vallée, François [Auteur]
Titre de la revue :
Energies
Nom court de la revue :
Energies
Numéro :
14
Pagination :
2852
Éditeur :
MDPI
Date de publication :
2021-05-15
ISSN :
1996-1073
Mot(s)-clé(s) en anglais :
smart meter
low voltage distribution networks
load flow computation
cable condition degradation
cable insulation wear
machine learning approaches
decision tree
k-nearest neighbors
logistic regression
low voltage distribution networks
load flow computation
cable condition degradation
cable insulation wear
machine learning approaches
decision tree
k-nearest neighbors
logistic regression
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Energie électrique
Informatique [cs]/Intelligence artificielle [cs.AI]
Sciences de l'ingénieur [physics]/Energie électrique
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Low voltage distribution networks have not been traditionally designed to accommodate the large-scale integration of decentralized photovoltaic (PV) generations. The bidirectional power flows in existing networks resulting ...
Lire la suite >Low voltage distribution networks have not been traditionally designed to accommodate the large-scale integration of decentralized photovoltaic (PV) generations. The bidirectional power flows in existing networks resulting from the load demand and PV generation changes as well as the influence of ambient temperature led to voltage variations and increased the leakage current through the cable insulation. In this paper, a machine learning-based framework is implemented for the identification of cable degradation by using data from deployed smart meter (SM) measurements. Nodal voltage variations are supposed to be related to cable conditions (reduction of cable insulation thickness due to insulation wear) and to client net demand changes. Various machine learning techniques are applied for classification of nodal voltages according to the cable insulation conditions. Once trained according to the comprehensive generated datasets, the implemented techniques can classify new network operating points into a healthy or degraded cable condition with high accuracy in their predictions. The simulation results reveal that logistic regression and decision tree algorithms lead to a better prediction (with a 97.9% and 99.9% accuracy, respectively) result than the k-nearest neighbors (which reach only 76.7%). The proposed framework offers promising perspectives for the early identification of LV cable conditions by using SM measurements.Lire moins >
Lire la suite >Low voltage distribution networks have not been traditionally designed to accommodate the large-scale integration of decentralized photovoltaic (PV) generations. The bidirectional power flows in existing networks resulting from the load demand and PV generation changes as well as the influence of ambient temperature led to voltage variations and increased the leakage current through the cable insulation. In this paper, a machine learning-based framework is implemented for the identification of cable degradation by using data from deployed smart meter (SM) measurements. Nodal voltage variations are supposed to be related to cable conditions (reduction of cable insulation thickness due to insulation wear) and to client net demand changes. Various machine learning techniques are applied for classification of nodal voltages according to the cable insulation conditions. Once trained according to the comprehensive generated datasets, the implemented techniques can classify new network operating points into a healthy or degraded cable condition with high accuracy in their predictions. The simulation results reveal that logistic regression and decision tree algorithms lead to a better prediction (with a 97.9% and 99.9% accuracy, respectively) result than the k-nearest neighbors (which reach only 76.7%). The proposed framework offers promising perspectives for the early identification of LV cable conditions by using SM measurements.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
Centrale Lille
Arts et Métiers Sciences et Technologies
Junia HEI
Centrale Lille
Arts et Métiers Sciences et Technologies
Junia HEI
Équipe(s) de recherche :
Équipe Réseaux
Date de dépôt :
2024-01-05T16:48:57Z
2024-02-06T13:06:17Z
2024-02-06T13:06:17Z
Fichiers
- energies-14-02852-v2.pdf
- Version éditeur
- Accès libre
- Accéder au document