Classement de données binaires lorsque les ...
Document type :
Partie d'ouvrage
Title :
Classement de données binaires lorsque les populations d'apprentissage et de test sont différentes
Author(s) :
Jacques, Julien [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Statistique Appliquée et de Géométrie Aléatoire de Grenoble [SAGAG]
Biernacki, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
MOdel for Data Analysis and Learning [MODAL]
Statistique Appliquée et de Géométrie Aléatoire de Grenoble [SAGAG]
Biernacki, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Book title :
Data Mining et apprentissage statistique : application en assurance, banque et marketing
Publisher :
Cépadues
Publication date :
2007-10-31
ISBN :
9782854287943
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Théorie [stat.TH]
French abstract :
L'analyse discriminante généralisée suppose que l'échantillon d'apprentissage et l'échantillon test, qui contient les individus à classer, sont issus d'une même population. Lorsque ces échantillons proviennent de populations ...
Show more >L'analyse discriminante généralisée suppose que l'échantillon d'apprentissage et l'échantillon test, qui contient les individus à classer, sont issus d'une même population. Lorsque ces échantillons proviennent de populations pour lesquelles les paramètres des variables descriptives sont différents, l'analyse discriminante généralisée consiste à adapter la règle de classification issue de la population d'apprentissage à la population test, en estimant un lien entre ces deux populations. Ce papier étend les travaux existant dans un cadre gaussien au cas des variables binaires. Afin de relever le principal défi de ce travail, qui consiste à déterminer un lien entre deux populations binaires, nous supposons que les variables binaires sont issues de la discrétisation de variables gaussiennes latentes. Une méthode d'estimation puis des tests sur simulations sont présentés, et une application dans un contexte biologique illustre ce travail.Show less >
Show more >L'analyse discriminante généralisée suppose que l'échantillon d'apprentissage et l'échantillon test, qui contient les individus à classer, sont issus d'une même population. Lorsque ces échantillons proviennent de populations pour lesquelles les paramètres des variables descriptives sont différents, l'analyse discriminante généralisée consiste à adapter la règle de classification issue de la population d'apprentissage à la population test, en estimant un lien entre ces deux populations. Ce papier étend les travaux existant dans un cadre gaussien au cas des variables binaires. Afin de relever le principal défi de ce travail, qui consiste à déterminer un lien entre deux populations binaires, nous supposons que les variables binaires sont issues de la discrétisation de variables gaussiennes latentes. Une méthode d'estimation puis des tests sur simulations sont présentés, et une application dans un contexte biologique illustre ce travail.Show less >
Language :
Anglais
Audience :
Nationale
Popular science :
Non
Collections :
Source :