Asymptotic behavior of the Whittle estimator ...
Document type :
Article dans une revue scientifique: Article original
Title :
Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process
Author(s) :
Bardet, Jean-Marc [Auteur]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Journal of Multivariate Analysis
Pages :
1-16
Publisher :
Elsevier
Publication date :
2014
ISSN :
0047-259X
English keyword(s) :
Malliavin calculus
Whittle estimator
Rosenblatt process
long-memory process
non-central limit theorem
Malliavin calculus.
Whittle estimator
Rosenblatt process
long-memory process
non-central limit theorem
Malliavin calculus.
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Statistiques [stat]/Théorie [stat.TH]
English abstract : [en]
The purpose of this paper is to estimate the self-similarity index of the Rosenblatt process by using the Whittle estimator. Via chaos expansion into multiple stochastic integrals, we establish a non-central limit theorem ...
Show more >The purpose of this paper is to estimate the self-similarity index of the Rosenblatt process by using the Whittle estimator. Via chaos expansion into multiple stochastic integrals, we establish a non-central limit theorem satisfied by this estimator. We illustrate our results by numerical simulations.Show less >
Show more >The purpose of this paper is to estimate the self-similarity index of the Rosenblatt process by using the Whittle estimator. Via chaos expansion into multiple stochastic integrals, we establish a non-central limit theorem satisfied by this estimator. We illustrate our results by numerical simulations.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- whittle6.pdf
- Open access
- Access the document
- 1302.5890
- Open access
- Access the document
- document
- Open access
- Access the document
- whittle6.pdf
- Open access
- Access the document