On the self-decomposability of the Fréchet ...
Document type :
Pré-publication ou Document de travail
Title :
On the self-decomposability of the Fréchet distribution
Author(s) :
Bosch, Pierre [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Simon, Thomas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Simon, Thomas [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
English abstract : [en]
Let $\{\Gamma_t, \, t\ge 0\}$ be the Gamma subordinator. Using a moment identification due to Bertoin-Yor (2002), we observe that for every $t > 0$ and $\alpha\in (0,1)$ the random variable $\Gamma_t^{-\alpha}$ is distributed ...
Show more >Let $\{\Gamma_t, \, t\ge 0\}$ be the Gamma subordinator. Using a moment identification due to Bertoin-Yor (2002), we observe that for every $t > 0$ and $\alpha\in (0,1)$ the random variable $\Gamma_t^{-\alpha}$ is distributed as the exponential functional of some spectrally negative Lévy process. This entails that all size-biased samplings of Fréchet distributions are self-decomposable and that the extreme value distribution $F_\xi$ is infinitely divisible if and only if $\xi\not\in (0,1),$ solving problems raised by Steutel (1973) and Bondesson (1992). We also review different analytical and probabilistic interpretations of the infinite divisibility of $\Gamma_t^{-\alpha}$ for $t,\alpha > 0.$Show less >
Show more >Let $\{\Gamma_t, \, t\ge 0\}$ be the Gamma subordinator. Using a moment identification due to Bertoin-Yor (2002), we observe that for every $t > 0$ and $\alpha\in (0,1)$ the random variable $\Gamma_t^{-\alpha}$ is distributed as the exponential functional of some spectrally negative Lévy process. This entails that all size-biased samplings of Fréchet distributions are self-decomposable and that the extreme value distribution $F_\xi$ is infinitely divisible if and only if $\xi\not\in (0,1),$ solving problems raised by Steutel (1973) and Bondesson (1992). We also review different analytical and probabilistic interpretations of the infinite divisibility of $\Gamma_t^{-\alpha}$ for $t,\alpha > 0.$Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- Frechet.pdf
- Open access
- Access the document
- 1302.3097
- Open access
- Access the document