Division of holomorphic functions and ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Division of holomorphic functions and growth conditions
Auteur(s) :
Alexandre, William [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mazzilli, Emmanuel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mazzilli, Emmanuel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Illinois Journal of Mathematics
Date de publication :
2013
Mot(s)-clé(s) en anglais :
Residue currents
Division of holomorphic functions
Division of holomorphic functions
Discipline(s) HAL :
Mathématiques [math]/Variables complexes [math.CV]
Résumé en anglais : [en]
Let D be a strictly convex domain of C^n, f_1 and f_2 be two holomorphic functions defined on a neighborhood of \overline D and set X_l={z, f_l(z)=0}, l=1,2. Suppose that X_l\cap bD is transverse for l=1 and l=2, and that ...
Lire la suite >Let D be a strictly convex domain of C^n, f_1 and f_2 be two holomorphic functions defined on a neighborhood of \overline D and set X_l={z, f_l(z)=0}, l=1,2. Suppose that X_l\cap bD is transverse for l=1 and l=2, and that X_1\cap X_2 is a complete intersection. We give necessary conditions when n\geq 2 and sufficient conditions when n=2 under which a function g can be written as g=g_1f_1+g_2f_2 with g_1 and g_2 in L^q(D), q\in [1,+\infty), or g_1 and g_2 in BMO(D). In order to prove the sufficient condition, we explicitly write down the functions g_1 and g_2 using integral representation formulas and new residue currents.Lire moins >
Lire la suite >Let D be a strictly convex domain of C^n, f_1 and f_2 be two holomorphic functions defined on a neighborhood of \overline D and set X_l={z, f_l(z)=0}, l=1,2. Suppose that X_l\cap bD is transverse for l=1 and l=2, and that X_1\cap X_2 is a complete intersection. We give necessary conditions when n\geq 2 and sufficient conditions when n=2 under which a function g can be written as g=g_1f_1+g_2f_2 with g_1 and g_2 in L^q(D), q\in [1,+\infty), or g_1 and g_2 in BMO(D). In order to prove the sufficient condition, we explicitly write down the functions g_1 and g_2 using integral representation formulas and new residue currents.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
30 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- division.pdf
- Accès libre
- Accéder au document
- 1207.1565
- Accès libre
- Accéder au document